From Protoplanetary Disks to Planet Formation, 1st ed. 2019
Saas-Fee Advanced Course 45. Swiss Society for Astrophysics and Astronomy

Saas-Fee Advanced Course Series, Vol. 45

Authors:

Coordinators: Audard Marc, Meyer Michael R., Alibert Yann

Language: English

Approximative price 116.04 €

In Print (Delivery period: 15 days).

Add to cartAdd to cart
Publication date:
260 p. · 15.5x23.5 cm · Hardback

Is the Sun and its planetary system special? How did the Solar system form? Are there similar systems in the Galaxy? How common are habitable planets? What processes take place in the early life of stars and in their surrounding circumstellar disks that could impact whether life emerges or not?

This book is based on the lectures by Philip Armitage and Wilhelm Kley presented at  45th Saas-Fee Advanced Course ?From Protoplanetary Disks to Planet Formation? of the Swiss Society for Astrophysics and Astronomy. The first part deals with the physical processes occurring in proto-planetary disks starting with the observational context, structure and evolution of the proto-planetary disk, turbulence and accretion, particle evolution and structure formation. The second part covers planet formation and disk-planet interactions. This includes in detail dust and planetesimal formation, growth to protoplanets, terrestrial planet formation, giant planet formation, migration of planets, multi-planet systems and circumbinary planets.

As Saas-Fee advanced course this book offers PhD students an in-depth treatment of the topic enabling them to enter on a research project in the field.

​1) Physical Processes in Protoplanetary Disks . . . . . . . . . . . . . . . . . . . . . . 1
Philip J. Armitage
1.1 Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Observational context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.1 The classification of Young Stellar Objects . . . . . . . . . . . . 3
1.2.2 Accretion rates and lifetimes . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.3 Inferences from the dust continuum . . . . . . . . . . . . . . . . . . 7
1.2.4 Molecular line observations . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.5 Large-scale-structure in disks . . . . . . . . . . . . . . . . . . . . . . . 11
1.3 Disk structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.1 Vertical and radial structure . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.2 Thermal physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.3.3 Ionization structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.4 Disk evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.4.1 The classical equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.4.2 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
1.4.3 Viscous heating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
1.4.4 Warped disks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
1.4.5 Disk winds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
1.5 Turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
1.5.1 Hydrodynamic turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . 58
1.5.2 Self-gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
1.5.3 Magnetohydrodynamic turbulence and transport . . . . . . . . 66
1.5.4 The magnetorotational instability . . . . . . . . . . . . . . . . . . . . 66
1.5.5 Transport in the boundary layer . . . . . . . . . . . . . . . . . . . . . . 82
1.6 Episodic accretion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
1.6.1 Secular disk instabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
1.6.2 Triggered accretion outbursts . . . . . . . . . . . . . . . . . . . . . . . . 93
1.7 Single and collective particle evolution . . . . . . . . . . . . . . . . . . . . . . . 97
1.7.1 Radial drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
1.7.2 Vertical settling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
1.7.3 Streaming instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
1.8 Structure formation in protoplanetary disks . . . . . . . . . . . . . . . . . . . . 109
1.8.1 Ice lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
1.8.2 Particle traps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
1.8.3 Zonal flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
1.8.4 Vortices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
1.8.5 Rossby wave instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
1.9 Disk dispersal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
1.9.1 Photoevaporation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
1.9.2 MHD winds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
References .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

2 Planet formation and disk-planet interactions . . . . . . . . . . . . . . . . . . . . 155
Wilhelm Kley
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
2.1.1 The Solar System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
2.1.2 Properties of the extrasolar planets . . . . . . . . . . . . . . . . . . . 158
2.1.3 Pathways to planets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
2.2 From Dust to Planetesimals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
2.2.1 Study the initial growth phase . . . . . . . . . . . . . . . . . . . . . . . 165
2.2.2 How to overcome growth barriers . . . . . . . . . . . . . . . . . . . . 170
2.2.3 Dust concentration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
2.3 Terrestrial planet formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
2.3.1 Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
2.3.2 Growth to protoplanets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
2.3.3 Assembly of the terrestrial planets . . . . . . . . . . . . . . . . . . . 185
2.4 The formation of massive planets by core accretion . . . . . . . . . . . . . 188
2.4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
2.4.2 The growth to a giant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
2.4.3 The final mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
2.4.4 Interior structure of planets . . . . . . . . . . . . . . . . . . . . . . . . . 201
2.5 Planets formed by gravitational instability . . . . . . . . . . . . . . . . . . . . . 203
2.5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
2.5.2 Linear stability analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
2.5.3 Fragmentation conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
2.5.4 Non-linear simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
2.6 Planet-disk interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
2.6.1 Basic concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
2.6.2 Type I migration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
2.6.3 Type II migration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
2.6.4 Other regimes of migration . . . . . . . . . . . . . . . . . . . . . . . . . 231
2.6.5 Eccentricity and inclination . . . . . . . . . . . . . . . . . . . . . . . . . 234
2.7 Multi-body systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
2.7.1 Resonances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
2.7.2 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
2.7.3 Multi-planet systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
2.7.4 Circumbinary Planets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

The authors:

Philip Armitage was born in 1971 just outside of London in Sevenoaks, Kent, England. At Cambridge University, he studied physics and theoretical physics, earning a B. A. in 1993. He earned a doctorate in 1996 for a study of accretion disks around young stars with Cathie Clark at Cambridge’s Institute of Astronomy. He was then a postdoc at the Canadian Institute of Theoretical Astrophysics at the University of Toronto (1996–1999). At Toronto, he continued his studies of accretion disks and began studies of planet formation. Next, he spent another postdoctoral year at the Max Planck Institute for Astrophysics in Munich. From 2000 to 2002 he was assistant professor at the University of St. Andrews in Scotland, and has been an assistant, associate and then full professor of the Department of Astrophysical and Planetary Sciences at the University of Colorado and Fellow of JILA since 2002. He has continued his research on accretion disks, on the formation and evolution of extrasolar planetary systems, and on the astrophysics of black holes. In 2018 he took up a joint position at Stony Brook University and the Center for Computational Astrophysics at the Flatiron Institute.

Wilhelm Kley studied physics and astronomy at the Universities of Bochum, Sussex and Munich. He obtained his PhD in physics at the Ludwig-Maximilians University (München) in 1988, and spent then 3 years as postdoc time at UC Santa Cruz and Queen Mary College London. He stayed for 6 years at Friedrich Schiller University (Jena) as postdoc and senior researcher, and another year as postdoc at Max-Planck Institute for Astronomy (Heidelberg). Since October 2001 he is full professor of Computational Physics at Eberhard-Karls University Tübingen. The focus of his research lies in the fields of Computational Astrophysics, Planet Formation, Accretion Disk Physics.

The editors:

Marc Audard (born 1974, M. Sc Physics, University of Lausanne; PhD, ETHZ) works on star for

Offers an in-depth introduction to the field of planet formation

Based on lectures given by world-class specialists

In the highly acclaimed series of Saas-Fee Advanced Courses by the Swiss Society for Astrophysics and Astronomy