GPS Satellite Surveying (4th Ed., 4th Edition)


Language: Anglais
Cover of the book GPS Satellite Surveying

Subject for GPS Satellite Surveying

Approximative price 178.60 €

In Print (Delivery period: 12 days).

Add to cartAdd to cart
Publication date:
807 p. · 15.8x24 cm · Hardback
Employ the latest satellite positioning tech with this extensive guide

GPS Satellite Surveying is the classic text on the subject, providing the most comprehensive coverage of global navigation satellite systems applications for surveying. Fully updated and expanded to reflect the field's latest developments, this new edition contains new information on GNSS antennas, Precise Point Positioning, Real-time Relative Positioning, Lattice Reduction, and much more. New contributors offer additional insight that greatly expands the book's reach, providing readers with complete, in-depth coverage of geodetic surveying using satellite technologies. The newest, most cutting-edge tools, technologies, and applications are explored in-depth to help readers stay up to date on best practices and preferred methods, giving them the understanding they need to consistently produce more reliable measurement.

Global navigation satellite systems have an array of uses in military, civilian, and commercial applications. In surveying, GNSS receivers are used to position survey markers, buildings, and road construction as accurately as possible with less room for human error. GPS Satellite Surveying provides complete guidance toward the practical aspects of the field, helping readers to:

  • Get up to speed on the latest GPS/GNSS developments
  • Understand how satellite technology is applied to surveying
  • Examine in-depth information on adjustments and geodesy
  • Learn the fundamentals of positioning, lattice adjustment, antennas, and more

The surveying field has seen quite an evolution of technology in the decade since the last edition's publication. This new edition covers it all, bringing the reader deep inside the latest tools and techniques being used on the job. Surveyors, engineers, geologists, and anyone looking to employ satellite positioning will find GPS Satellite Surveying to be of significant assistance.




1. Introduction

2. Least-Squares Adjustments

2.1 Elementary Considerations 

2.1.1 Statistical Nature of Surveying Measurements 

2.1.2 Observational Errors 

2.1.3 Accuracy and Precision 

2.2 Stochastic and Mathematical Models 

2.3 Mixed Model 

2.3.1 Linearization 

2.3.2 Minimization and Solution 

2.3.3 Cofactor Matrices 

2.3.4 A Posteriori Variance of Unit Weight 

2.3.5 Iterations 

2.4 Sequential Mixed Model 

2.5 Model Specifications

2.5.1 Observation Equation Model 

2.5.2 Condition Equation Model

2.5.3 Mixed Model with Observation Equations

2.5.4 Sequential Observation Equation Model 

2.5.5 Observation Equation Model with Observed Parameters 

2.5.6 Mixed Model with Conditions 

2.5.7 Observation Equation Model with Conditions

2.6 Minimal and Inner Constraints 

2.7 Statistics in Least-Squares Adjustment 

2.7.1 Fundamental Test 

2.7.2 Testing Sequential Least Squares 

2.7.3 General Linear Hypothesis 

2.7.4 Ellipses as Confidence Regions 

2.7.5 Properties of Standard Ellipses 

2.7.6 Other Measures of Precision 

2.8 Reliability

2.8.1 Redundancy Numbers 

2.8.2 Controlling Type-II Error for a Single Blunder 

2.8.3 Internal Reliability 

2.8.4 Absorption 

2.8.5 External Reliability 

2.8.6 Correlated Cases 

2.9 Blunder Detection

2.9.1 Tau Test 

2.9.2 Data Snooping

2.9.3 Changing Weights of Observations 

2.10 Examples

2.11 Kalman Filtering

3. Recursive least squares

3.1 Static Parameter 

3.2 Static Parameters and Arbitrary Time-Varying Variables 

3.3 Dynamic Constraints 

3.4 Static Parameters and Dynamic Constraints 

3.5 Static Parameter, Parameters Subject to Dynamic Constraints, and Arbitrary Time-Varying Parameters 

4. Geodesy

4.1 International Terrestrial Reference Frame 

4.1.1 Polar Motion 1

4.1.2 Tectonic Plate Motion

4.1.3 Solid Earth Tides 

4.1.4 Ocean Loading 

4.1.5 Relating of Nearly Aligned Frames 

4.1.6 ITRF and NAD83 138

4.2 International Celestial Reference System 

4.2.1 Transforming Terrestrial and Celestial Frames 

4.2.2 Time Systems 

4.3 Datum 

4.3.1 Geoid 

4.3.2 Ellipsoid of Rotation 

4.3.3 Geoid Undulations and Deflections of the Vertical 

4.3.4 Reductions to the Ellipsoid 

4.4 3D Geodetic Model 

4.4.1 Partial Derivatives 

4.4.2 Reparameterization 

4.4.3 Implementation Considerations 

4.4.4 GPS Vector Networks 

4.4.5 Transforming Terrestrial and Vector Networks 

4.4.6 GPS Network Examples 

4.5 Ellipsoidal Model 

4.5.1 Reduction of Observations

4.5.2 Direct and Inverse Solutions on the Ellipsoid 

4.5.3 Network Adjustment on the Ellipsoid

4.6 Conformal Mapping Model 

4.6.1 Reduction of Observations 

4.6.2 Angular Excess 

4.6.3 Direct and Inverse Solutions on the Map 

4.6.4 Network Adjustment on the Map 

4.6.5 Similarity Revisited 

4.7 Summary 

5. Satellite systems

5.1 Motion of Satellites 

5.1.1 Kepler Elements 

5.1.2 Normal Orbital Theory

5.1.3 Satellite Visibility and Topocentric Motion 

5.1.4 Perturbed Satellite Motion 

5.2 Global Positioning System 

5.2.1 General Description 

5.2.2 Satellite Transmissions at 2014 

5.2.3 GPS Modernization Comprising Block IIM, Block IIF, and Block III 


5.4 Galileo 

5.5 QZSS 

5.6 Beidou 

5.7 IRNSS 


6. GNSS positioning approaches

6.1 Observables 

6.1.1 Undifferenced Functions 

6.1.2 Single Differences 

6.1.3 Double Differences 

6.1.4 Triple Differences 

6.2 Operational Details

6.2.1 Computing the Topocentric Range 

6.2.2 Satellite Timing Considerations

6.2.3 Cycle Slips 

6.2.4 Phase Windup Correction 

6.2.5 Multipath 

6.2.6 Phase Center Offset and Variation 

6.2.7 GNSS Services 

6.3 Navigation Solution 

6.3.1 Linearized Solution 

6.3.2 DOPs and Singularities 

6.3.3 Nonlinear Closed Solution 

6.4 Relative Positioning 

6.4.1 Nonlinear Double-Difference Pseudorange Solution 

6.4.2 Linearized Double- and Triple-Differenced Solutions 

6.4.3 Aspects of Relative Positioning 

6.4.4 Equivalent Undifferenced Formulation 

6.4.5 Ambiguity Function 

6.4.6 GLONASS Carrier Phase 

6.5 Ambiguity Fixing 

6.5.1 The Constraint Solution

6.5.2 LAMBDA 

6.5.3 Discernibility

6.5.4 Lattice Reduction and Integer Least Squares 

6.6 Network-Supported Positioning

6.6.1 PPP 

6.6.2 CORS 

6.6.3 PPP-RTK 

6.7 Triple-Frequency Solutions

6.7.1 Single-Step Position Solution 

6.7.2 Geometry-Free TCAR 

6.7.3 Geometry-Based TCAR 

6.7.4 Integrated TCAR 

6.7.5 Positioning with Resolved Wide Lanes 

6.8 Summary 

7. Real-time kinematics relative positioning

7.1 Multisystem Considerations 

7.2 Undifferenced and Across-Receiver Difference Observations 

7.3 Linearization and Hardware Bias Parameterization 

7.4 RTK Algorithm for Static and Short Baselines 

7.4.1 Illustrative Example

7.5 RTK Algorithm for Kinematic Rovers and Short Baselines

7.5.1 Illustrative Example 

7.6 RTK Algorithm with Dynamic Model and Short Baselines 

7.6.1 Illustrative Example 

7.7 RTK Algorithm with Dynamic Model and Long Baselines 

7.7.1 Illustrative Example 

7.8 RTK Algorithms with Changing Number of Signals 

7.9 Cycle Slip Detection and Isolation

7.9.1 Solutions Based on Signal Redundancy 

7.10 Across-Receiver Ambiguity Fixing 

7.10.1 Illustrative Example 

7.11 Software Implementation

8. Troposphere and ionosphere

8.1 Overview 

8.2 Tropospheric Refraction and Delay 

8.2.1 Zenith Delay Functions

8.2.2 Mapping Functions

8.2.3 Precipitable Water Vapor 

8.3 Troposphere Absorption 

8.3.1 The Radiative Transfer Equation 

8.3.2 Absorption Line Profiles 

8.3.3 General Statistical Retrieval 

8.3.4 Calibration of WVR 

8.4 Ionospheric Refraction 

8.4.1 Index of Ionospheric Refraction 

8.4.2 Ionospheric Function and Cycle Slips 

8.4.3 Single-Layer Ionospheric Mapping Function 

8.4.4 VTEC from Ground Observations 

8.4.5 Global Ionospheric Maps 

9. GNSS receiver antennas

9.1 Elements of Electromagnetic Fields and Electromagnetic Waves 

9.1.1 Electromagnetic Field 5

9.1.2 Plane Electromagnetic Wave 

9.1.3 Complex Notations and Plane Wave in Lossy Media 

9.1.4 Radiation and Spherical Waves

9.1.5 Receiving Mode 

9.1.6 Polarization of Electromagnetic Waves

9.1.7 The dB Scale 

9.2 Antenna Pattern and Gain 

9.2.1 Receiving GNSS Antenna Pattern and Reference Station and Rover Antennas 

9.2.2 Directivity 

9.2.3 Polarization Properties of the Receiving GNSS Antenna

9.2.4 Antenna Gain

9.2.5 Antenna Effective Area 

9.3 Phase Center 

9.3.1 Antenna Phase Pattern 

9.3.2 Phase Center Offset and Variations

9.3.3 Antenna Calibrations 

9.3.4 Group Delay Pattern 

9.4 Diffraction and Multipath

9.4.1 Diffraction Phenomena 

9.4.2 General Characterization of Carrier Phase Multipath

9.4.3 Specular Reflections 

9.4.4 Antenna Down-Up Ratio 

9.4.5 PCV and PCO Errors Due to Ground Multipath 

9.5 Transmission Lines 

9.5.1 Transmission Line Basics 

9.5.2 Antenna Frequency Response

9.5.3 Cable Losses 

9.6 Signal-to-Noise Ratio 

9.6.1 Noise Temperature 

9.6.2 Characterization of Noise Sources 

9.6.3 Signal and Noise Propagation through a Chain of Circuits 

9.6.4 SNR of the GNSS Receiving System 

9.7 Antenna Types 

9.7.1 Patch Antennas 

9.7.2 Other Types of Antennas 

9.7.3 Flat Metal Ground Planes 

9.7.4 Impedance Ground Planes

9.7.5 Vertical Choke Rings and Compact Rover Antenna

9.7.6 Semitransparent Ground Planes 

9.7.7 Array Antennas

9.7.8 Antenna Manufacturing Issues 


A - General background

B - The ellipsoid

C - Conformal mapping

D - Vector calculus and delta function

E - Electromagnetic field generated by arbitrary sources, magnetic currents, boundary conditions and images

F - Diffraction over half-plane

G - Single cavity mode approximation with patch antenna analysis

H - Patch antennas with artificial dielectric substrates

I - Convex patch array geodetic antenna


Author index

Subject index