Infrared and Raman Spectroscopy in Forensic Science

Coordinators: Chalmers John M., Edwards Howell G. M., Hargreaves Michael D.

Language: English

174.12 €

In Print (Delivery period: 14 days).

Add to cartAdd to cart
Publication date:
648 p. · 19.4x25 cm · Hardback
This book will provide a survey of the major areas in which information derived from vibrational spectroscopy investigations and studies have contributed to the benefit of forensic science, either in a complementary or a unique way. This is highlighted by examples taken from real case studies and analyses of forensic relevance, which provide a focus for current and future applications and developments.

About the Editors xxi

List of Contributors xxiii

Preface xxvii

Section I: Introduction 1

1 Introduction and Scope 3
John M. Chalmers, Howell G.M. Edwards and Michael D. Hargreaves

1.1 Historical Prologue 3

1.2 The Application of Infrared Spectroscopy and Raman Spectroscopy in Forensic Science 5

References 7

2 Vibrational Spectroscopy Techniques: Basics and Instrumentation 9
John M. Chalmers, Howell G.M. Edwards and Michael D. Hargreaves

2.1 Introduction 9

2.2 Vibrational Spectroscopy Techniques 9

2.2.1 The basics and some comparisons 9

2.2.2 Quantitative and classification analyses 16

2.2.3 Reference databases and search libraries/algorithms 20

2.3 Vibrational Spectroscopy: Instrumentation 22

2.3.1 Spectrometers 22

2.3.2 Vibrational spectroscopy–microscopy systems 28

2.3.3 Fibre optics and fibre-optic probes 34

2.3.4 Remote, portable, handheld, field-use, and stand-off vibrational spectroscopy instrumentation 35

2.4 Closing Remarks 40

References 40

3 Vibrational Spectroscopy Sampling Techniques 45
John M. Chalmers, Howell G.M. Edwards and Michael D. Hargreaves

3.1 Introduction 45

3.2 Vibrational Spectroscopy: Sampling Techniques 47

3.2.1 Raman spectroscopy 47

3.2.2 Mid-infrared spectroscopy 58

3.2.3 Near-infrared spectroscopy: sampling techniques 76

3.2.4 Terahertz/far-infrared spectroscopy: sampling techniques 79

3.3 Closing Remarks 81

Acknowledgements 81

References 82

Section II: Criminal Scene 87

4 Criminal Forensic Analysis 89
Edward G. Bartick

4.1 Introduction 89

4.2 Forensic Analysis 90

4.3 General Use of IR and Raman Spectroscopy in Forensic Analysis 91

4.3.1 Progression of infrared spectroscopy development in forensic analysis 91

4.3.2 Progression of Raman spectroscopy development in forensic analysis 91

4.3.3 Sampling methods 91

4.4 Applications of Evidential Material Analysis 93

4.4.1 Polymers 93

4.4.2 Drugs 101

4.4.3 Explosives 103

4.4.4 Fingerprint analysis 104

4.5 Summary and Future Direction 105

Acknowledgements 106

References 106

4.1 Forensic Analysis of Hair by Infrared Spectroscopy 111
Kathryn S. Kalasinsky

4.1.1 Introduction 111

4.1.2 Basic Forensic Hair Analysis 113

4.1.3 Uniqueness of Hair to Chemical Analysis 114

4.1.4 Mechanism for Chemical Substance Incorporation into Hair 115

4.1.5 Applications 118

4.1.6 Disease Diagnosis 119

4.1.7 Summary 119

References 119

4.2 Raman Spectroscopy for Forensic Analysis of Household and Automotive Paints 121
Steven E.J. Bell, Samantha P. Stewart and W.J. Armstrong

4.2.1 Introduction 121

4.2.2 Paint Composition 121

4.2.3 Analysis of Resin Bases 122

4.2.4 White Paint 125

4.2.5 Coloured Household Paints 126

4.2.6 Multi-Layer Paints 130

4.2.7 Automotive Paint 132

4.2.8 Conclusions 135

References 135

4.3 Raman Spectroscopy for the Characterisation of Inks on Written Documents 137
A. Guedes and A.C. Prieto

4.3.1 Introduction 137

4.3.2 Experimental 139

4.3.3 Chemical Differences in the Composition of Writing Inks through Time, and Modern Inks: Major Groups 141

4.3.4 Ink Discrimination 144

4.3.5 Forensic Test 146

4.3.6 Conclusions 149

References 149

4.4 Forensic Analysis of Fibres by Vibrational Spectroscopy 153
Peter M. Fredericks

4.4.1 Introduction 153

4.4.2 Infrared Spectroscopy 154

4.4.3 Raman Spectroscopy 162

4.4.4 Data Analysis 165

4.4.5 Conclusions 167

Acknowledgement 168

References 168

4.5 In Situ Crime Scene Analysis 171
Edward G. Bartick

4.5.1 Introduction 171

4.5.2 Instrumentation 172

4.5.3 Applications 177

4.5.4 Conclusion 183

Acknowledgements 183

References 183

4.6 Raman spectroscopy gains currency 185
R. Withnall, A. Reip and J. Silver

4.6.1 Introduction 185

4.6.2 Banknotes 186

4.6.3 Postage Stamps 194

4.6.4 Potential Forensic Applications 198

4.6.5 Conclusions 203

Acknowledgements 203

References 203

Section III: Counter Terrorism and Homeland Security 205

5 Counter Terrorism and Homeland Security 207
Vincent Otieno-Alego and Naomi Speers

5.1 Introduction 207

5.2 Infrared and Raman Spectroscopy for Explosives Identification 208

5.2.1 Level of chemical identification 209

5.2.2 Capability to analyse a large range of explosives and related chemicals 210

5.2.3 Other positive features of IR and Raman spectroscopy in explosive analysis 211

5.2.4 Case Studies – Example 1 211

5.3 Portable IR and Raman Instruments 213

5.3.1 Case Studies – Example 2 214

5.4 Post-Blast Examinations 217

5.5 Detection of Explosives in Fingerprints 217

5.6 Spatially Offset Raman Spectroscopy 218

5.6.1 Applications of SORS in explosive analysis 220

5.7 Terahertz Spectroscopy of Explosives 221

5.7.1 Sampling modes and sample preparation 222

5.7.2 THz spectroscopy of explosives and explosive related materials 223

5.8 Summary 226

Glossary 227

References 228

5.1 Tracing Bioagents – a Vibrational Spectroscopic Approach for a Fast and Reliable Identification of Bioagents 233
P. Rösch, U. Münchberg, S. Stöckel and J. Popp

5.1.1 Introduction 233

5.1.2 Toxins 236

5.1.3 Viruses 238

5.1.4 Bacteria 238

5.1.4.1 Bulk samples 238

5.1.4.2 Single bacterium identification 240

5.1.5 Conclusion 246

Acknowledgement 246

References 246

5.2 Raman Spectroscopic Studies of Explosives and Precursors: Applications and Instrumentation 251
Mary L. Lewis, Ian R. Lewis and Peter R. Griffiths

5.2.1 Background 251

5.2.2 Introduction 252

5.2.3 UV Excited Raman Studies of Explosives 253

5.2.4 FT-Raman Studies of Explosives 255

5.2.5 Neither FT-Raman nor Traditional Dispersive Raman 258

5.2.6 Surface Enhanced Raman and Surface Enhanced Resonance Raman Studies of Explosives 258

5.2.7 Dispersive Raman Studies of Explosives 259

5.2.8 Compact Dispersive Raman Spectrometers for the Study of Explosives 260

5.2.9 Spatially Offset Raman Spectroscopy 265

5.2.10 Stand-Off Raman of Explosives 266

5.2.11 Raman Microscopy and Imaging 266

5.2.12 Vehicle-Mounted Raman Analysers 267

5.2.13 Classification Schema for Explosives 268

5.2.14 Summary 268

References 269

5.3 Handheld Raman and FT-IR Spectrometers 275
Michael D. Hargreaves, Robert L. Green, Wayne Jalenak, Christopher D. Brown
and Craig Gardner

5.3.1 Introduction 275

5.3.2 Handheld/Portable Raman and FT-IR Devices 276

5.3.3 Explosives 276

5.3.4 Tactical Considerations 277

5.3.5 Sample Considerations 279

5.3.6 Raman and FT-IR Spectroscopy Explosive Identification Capabilities 280

5.3.7 Performance Characterisation 285

5.3.8 Summary 285

Disclaimer 286

References 286

5.4 Non-Invasive Detection of Concealed Liquid and Powder Explosives using Spatially Offset Raman spectroscopy 289
Kevin Buckley and Pavel Matousek

5.4.1 Introduction 289

5.4.2 Discussion and Examples 290

5.4.3 Summary 293

References 294

5.5 Terahertz Frequency Spectroscopy and its Potential for Security Applications 295
A.D. Burnett, A.G. Davies, P. Dean, J.E. Cunningham and E.H. Linfield

5.5.1 Introduction 295

5.5.2 Terahertz Frequency Radiation 296

5.5.3 Terahertz Time-Domain Spectroscopy 296

5.5.4 Examples of the Use of THz Spectroscopy to Detect Materials of Security Interest 298

5.5.5 Conclusions and Future Outlook 309

Acknowledgements 309

References 310

Section IV: Drugs and Drugs of Abuse 315

6 Raman Spectroscopy of Drugs of Abuse 317
Steven E.J. Bell, Samantha P. Stewart and S.J. Speers

6.1 Introduction 317

6.2 Bulk Drugs 317

6.2.1 General introduction 317

6.2.2 Experimental considerations 319

6.2.3 Laboratory-based methods 322

6.2.4 Raman outside the laboratory 326

6.3 Trace Detection 328

6.3.1 Drug microparticles 328

6.3.2 Surface-enhanced Raman spectroscopy 329

6.4 Conclusions 335

References 336

6.1 Drugs of Abuse – Application of Handheld FT-IR and Raman Spectrometers 339
Michael D. Hargreaves

6.1.1 Introduction 339

6.1.2 Advantages of Vibrational Spectroscopy 339

6.1.3 General Drugs of Abuse – Introduction 340

6.1.4 Vibrational Spectroscopy 340

6.1.5 Analysis of Street Samples 343

6.1.6 New Narcotic Threats 344

6.1.7 Identification of Drug Precursors 344

6.1.8 Case Studies 346

6.1.9 Conclusion 347

Disclaimer 348

References 348

6.2 Non-Invasive Detection of Illicit Drugs Using Spatially Offset Raman Spectroscopy 351
Kevin Buckley and Pavel Matousek

6.2.1 Introduction 351

6.2.2 Application Examples 352

6.2.3 Summary 356

References 356

6.3 Detection of Drugs of Abuse Using Surface Enhanced Raman Scattering 357
Karen Faulds and W. Ewen Smith

6.3.1 Introduction 357

6.3.2 Substrates 358

6.3.3 Direct Detection 360

6.3.4 Indirect Detection 363

6.3.5 Conclusions 365

References 365

Section V: Art 367

7 Vibrational Spectroscopy as a Tool for Tracing Art Forgeries 369
A. Deneckere, P. Vandenabeele and L. Moens

7.1 Introduction 369

7.2 How to Trace Art Forgeries with Vibrational Spectroscopy? 371

7.2.1 Detection of anachronisms 371

7.2.2 Comparing with the artist’s palette 375

7.2.3 Impurities 377

7.3 Conclusion 380

Acknowledgements 380

References 380

7.1 Identification of Dyes and Pigments by Vibrational Spectroscopy 383
Juan Manuel Madariaga

7.1.1 Introduction 383

7.1.2 Review of the Scientific Literature 384

7.1.3 Databases of Reference Materials 386

7.1.4 FT-IR and Raman Spectroscopy Applications 390

References 396

7.2 The Vinland Map: An Authentic Relic of Early Exploration or a Modern Forgery – Raman Spectroscopy in a Pivotal Role? 401
Howell G.M. Edwards

7.2.1 Introduction 401

7.2.2 The Scientific Analysis of the Vinland Map and Tartar Relation 403

7.2.3 Raman Microspectroscopic Study 403

References 407

7.3 Study of Manuscripts by Vibrational Spectroscopy 409
Lucia Burgio

7.3.1 Introduction 409

7.3.2 Why Raman Microscopy? 410

7.3.3 Dating and Authentication 411

7.3.4 Provenance and Trade Routes 413

7.3.5 Infrared Spectroscopy 415

Acknowledgements 415

References 415

Section VI: Archaeology and Mineralogy 419

8 Infrared and Raman Spectroscopy: Forensic Applications in Mineralogy 421
J. Jehlicka

8.1 Introduction 421

8.2 Applications of Raman Spectroscopy for Provenancing 423

8.3 Raman Spectroscopy of Minerals 423

8.3.1 Class 1: Elements 423

8.3.2 Minerals from other groups of the mineralogical classification system 426

8.4 Opals 428

8.5 Natural Glass 428

8.6 Meteorites 429

8.7 Identification and Provenancing of Gemstones 430

8.7.1 Synthetic gemstones 431

8.7.2 Semi-precious minerals 431

8.7.3 Garnets 431

8.8 Common Minerals 433

8.8.1 Clays 433

8.9 Databases 434

8.10 Identification of Inclusions in Minerals 434

8.11 Raman Mapping Techniques 436

8.12 Analyses Outdoors and On Site 437

8.13 Applications of Raman Spectroscopy to the Provenancing of Rocks 438

8.14 Summary 438

Acknowledgements 439

References 439

8.1 Identification of Ivory by Conventional Backscatter Raman and SORS 447
Michael D. Hargreaves and Howell G.M. Edwards

8.1.1 Introduction 447

8.1.2 Application of Raman Spectroscopy 449

8.1.3 Conclusions 453

Disclaimer 453

References 454

8.2 Applications to the Study of Gems and Jewellery 455
Lore Kiefert, Marina Epelboym, Hpone-Phyo Kan-Nyunt and Susan Paralusz

8.2.1 Introduction 455

8.2.2 Case Study Example I: Mid-Infrared and Raman Spectroscopy of Diamonds 456

8.2.3 Case Study Example II: Detection of Fissure Fillings in Emeralds 458

8.2.4 Case Study Example III: The Raman Identification of Turquoise 464

8.2.5 Summary 466

Acknowledgements 467

References 467

8.3 Raman Spectroscopy of Ceramics and Glasses 469
Paola Ricciardi and Philippe Colomban

8.3.1 Introduction 469

8.3.2 How to Discriminate Between Genuine Artifacts and Copies and Fakes 470

8.3.3 On-Site Measurements and Procedures 472

8.3.4 Case Studies 474

8.3.5 Conclusions 478

References 478

8.4 Raman Spectroscopy at Longer Excitation Wavelengths Applied to the Forensic Analysis of Archaeological Specimens: A Novel Aspect of Forensic Geoscience 481
Howell G.M. Edwards

8.4.1 Introduction 481

8.4.2 Experimental 486

8.4.3 Results and Discussion 486

8.4.4 Human Tissues and Skeletal Remains 495

8.4.5 Conclusions 509

Acknowledgements 509

References 510

Section VII: Counterfeit Consumer Products 513

9 Counterfeit Consumer Products 515
Andrew J. O’Neil

9.1 Background 515

9.2 Anti-Counterfeiting Organisations 515

9.3 Definition of a Counterfeit Product 516

9.4 Counterfeit Product Spectroscopic Analysis 516

9.4.1 Counterfeit alcoholic beverages and whisky 517

9.4.2 Counterfeit stamps 518

9.4.3 Counterfeit currency 519

9.4.4 Counterfeit medicines 520

9.5 Case Studies Using Mid-infrared, Raman and Near-infrared Spectroscopies and NIR Multispectral Imaging 529

9.6 Case Study I: Counterfeit Clothing 532

9.6.1 Case study Ia: counterfeit Burberry Classic Check Scarf 532

9.6.2 Case study Ib: counterfeit New Era 59fifty baseball caps 532

9.7 Case Study II: Counterfeit Aftershave 536

9.8 Case Study III: Counterfeit Medicines 540

9.8.1 Near-infrared spectrometry 542

9.8.2 Raman spectrometry 545

9.8.3 NIR Multispectral Imaging 547

9.9 Case Study IV: Counterfeit Product Packaging 549

9.9.1 ATR/FT-IR Spectroscopy 549

9.10 Case Study V: Counterfeit Royal Mail First Class Stamps 551

9.10.1 Near-infrared spectroscopic analysis 551

9.10.2 Near-infrared multispectral imaging 551

9.11 Case Study VI: Counterfeit Bank of England Banknotes 552

9.11.1 ATR/FT-IR Spectroscopic Analysis 552

9.11.2 NIR Multispectral Imaging 555

9.12 Conclusion 555

References 557

9.1 Raman Spectroscopy for the Analysis of Counterfeit Tablets 561
Kaho Kwok and Lynne S. Taylor

9.1.1 The Pharmaceutical Counterfeiting Problem 561

9.1.2 Analytical Techniques to Detect Counterfeit Products 562

9.1.3 Using Raman Spectroscopy to Characterise Genuine and Counterfeit Tablets–A Case Study 563

9.1.4 Conclusions 571

Acknowledgements 571

References 571

9.2 Examination of Counterfeit Pharmaceutical Labels 573
Mark R. Witkowski and Mary W. Carrabba

9.2.1 Introduction 573

9.2.2 Counterfeit Packaging Analysis 574

9.2.3 Case Study I: Counterfeit Lipitor Ò Labels 574

9.2.4 Case Study II: Counterfeit Zyprexa Ò Labels 578

9.2.5 Conclusion 581

Disclaimer 582

Acknowledgements 582

References 582

9.3 Vibrational Spectroscopy for “Food Forensics” 583
Victoria L. Brewster and Royston Goodacre

9.3.1 Introduction 583

9.3.2 Adulteration 584

9.3.3 Provenance 587

9.3.4 Food Spoilage 587

9.3.5 Micro-Organism Identification 588

9.3.6 Conclusion 589

Acknowledgements 589

References 589

9.4 Infrared Spectroscopy for the Detection of Adulteration in Foods 593
Banu Özen and Figen Tokatli

9.4.1 Introduction 593

9.4.2 Adulteration of Food Products and Application of IR Spectroscopy in the Detection of Adulteration 594

9.4.3 Case Study: Adulteration of Extra Virgin Olive Oils with Refined Hazelnut Oil 596

9.4.4 Summary 599

References 599

Index 603

John Chalmers, recently completed post-doctoral research with Professor Edwards at the University of Bradford. He has just joined Litethru, a company based in Daresbury, involved in developing Raman instrumentation for non-invasive analysis.

Howell Edwards is Director of Research in the School of Life Sciences at Bradford University. His studies in the application of Raman spectroscopy to biological / geological interfaces have been extended to a space environment and he was an adjunct scientist for the Mars Express Beagle 2 lander mission, and a contributor to the ESA FOTON 12-Biopan international consortium for the analysis of Martian lithic analogues. He has published over 430 research papers in Raman spectroscopy and is on the Editorial Advisory Boards of the Journal of Raman Spectroscopy, Spectrochimica Acta: Biomolecular Spectroscopy, the Internet Journal of Vibrational Spectroscopy and the Asian Journal of Spectroscopy. Currently, he has research collaborations with groups in Spain, France, Denmark, Germany, Australia, Brazil and the USA.
He has lectured widely on Raman spectroscopy and its applications. Professor Edwards is a national committee member of the Molecular Spectroscopy Group of the Royal Society of Chemistry and also of the UK Astrobiology Panel.

Mike Hargreaves is an independent consultant in the field of vibrational spectroscopy. He left ICI in 1997 after 22 years, serving as a Business Research Associate in the Science Support Group of ICI Technology. He held the position of chairman of the UK Infrared and Raman Discussion Group (IRDG) for a number of years and is current chairman of the RSC (Royal Society of Chemistry) Molecular Spectroscopy Subject Group. He is a member of the Association of British Spectroscopists (ABS) Trust, and is a Fellow of the Royal Society of Chemistry. In 1994, he received the Williams-Wright Award from the Coblentz Society and in 2008 was