Earth Gravity Field from Space - from Sensors to Earth Sciences, Reprinted from Space Science Reviews, Vol. 108/1-2
Space Sciences Series of ISSI Series, Vol. 17

Coordinators: Beutler G., Drinkwater M.R., Rummel R., von Steiger Rudolf

Language: English
Cover of the book Earth Gravity Field from Space - from Sensors to Earth Sciences

Subjects for Earth Gravity Field from Space - from Sensors to Earth...

Approximative price 210.99 €

In Print (Delivery period: 15 days).

Add to cartAdd to cart
Earth Gravity Field from Space - from Sensors to Earth Sciences
Publication date:
447 p. · 16x24 cm · Paperback

210.99 €

Subject to availability at the publisher.

Add to cartAdd to cart
Earth gravity field from space : from sensors to Earth, (Space sciences series of ISSI, Vol. 17)
Publication date:
447 p. · 15.5x23.5 cm · Hardback
Volume resulting from an ISSI Workshop, 11-15 March 2002, Bern, Switzerland
How to Climb the Gravity Wall.- Strategies for Precise Orbit Determination of Low Earth Orbiters Using the GPS.- Aiming at a 1-cm Orbit for Low Earth Orbiters: Reduced-Dynamic and Kinematic Precise Orbit Determination.- Space-Wise, Time-Wise, Torus and Rosborough Representations in Gravity Field Modelling.- Gravity Field Recovery From GRACE: Unique Aspects of the High Precision Inter-Satellite Data and Analysis Methods.- Global Gravity Field Recovery Using Solely GPS Tracking and Accelerometer Data from CHAMP.- The Processing of Band-Limited Measurements: Filtering Techniques in the Least Squares Context and in the Presence of Data Gaps.- Long Wavelength Sea Level and Solid Surface Perturbations Driven by Polar Ice Mass Variations: Fingerprinting Greenland and Antarctic Ice Sheet Flux.- Benefits From GOCE within Solid Earth Geophysics.- The Potential of GOCE in Constraining the Structure of the Crust and Lithosphere from Post-Glacial Rebound.- Deep and Shallow Solid-Earth Structures Reconstructed with Sequential Integrated Inversion (SII) of Seismic and Gravity Data.- Present-Day Sea Level Change: Observations and Causes.- Global Ocean Data Assimilation and Geoid Measurements.- Resolution Needed for an Adequate Determination of the Mean Ocean Circulation from Altimetry and an Improved Geoid.- Error Characteristics Estimated from CHAMP, GRACE and GOCE Derived Geoids and from Satellite Altimetry Derived Mean Dynamic Topography.- Estimating the High-Resolution Mean Sea-Surface Velocity Field by Combined Use of Altimeter and Drifter Data for Geoid Model Improvement.- Combined Use of Altimetry and In Situ Gravity Data for Coastal Dynamics Studies.- Feasibility, and Contribution to Ocean Circulation Studies, of Ocean Bottom Pressure Determination.- Impact of Geoid Improvementon Ocean Mass and Heat Transport Estimates.- How Operational Oceanography can Benefit from Dynamic Topography Estimates as Derived From Altimetry and Improved Geoid.- Remarks on the Role of Height Datum in Altimetry-Gravimetry Boundary-Value Problems.- Ocean Tides In GRACE Monthly Averaged Gravity Fields.- Tidal Models in a New Era of Satellite Gravimetry.- The Elusive Stationary Geoid.- Geodetic Methods for Calibration of GRACE and GOCE.- Benefits of GRACE and GOCE to Sea Level Studies.- What Might GRACE Contribute to Studies of Post Glacial Reboud?.- Measuring the Distribution of Ocean Mass Using GRACE.- Monitoring Changes in Continental Water Storage with GRACE.- Attitude and Drag Control: An Application to the GOCE Satellite.- On Superconductive Gravity Gradiometry in Space.- Satellite-Satellite Laser Links for Future Gravity Missions.- Possible Future Use of Laser Gravity Gradiometers.- MICROSCOPE Instrument Development, Lessons for GOCE.- Needs and Tools for Future Gravity Measuring Missions.- GOCE: ESA’s First Earth Explorer Core Mission.- Earth Gravity Field From Space — From Sensors to Earth Sciences: Closing Remarks.- Author Index.- List of Participants.