The Near-Surface Layer of the Ocean (2nd Ed., Softcover reprint of the original 2nd ed. 2014)
Structure, Dynamics and Applications

Atmospheric and Oceanographic Sciences Library Series, Vol. 48

Authors:

Language: English

158.24 €

In Print (Delivery period: 15 days).

Add to cartAdd to cart
The Near-Surface Layer of the Ocean
Publication date:
Support: Print on demand

158.24 €

In Print (Delivery period: 15 days).

Add to cartAdd to cart
The Near-Surface Layer of the Ocean (2nd Ed.). Structure, Dynamics and Applications
Publication date:
552 p. · 15.5x23.5 cm · Hardback
The rationale for publishing a second edition of this monograph is that this area of research continues to show remarkable advancement. The new generation of synthetic aperture radar satellites has provided unprecedented spatial resolution of sea surface features. In addition, satellites to measure sea surface salinity have been launched. Computational fluid dynamics models open new opportunities in understanding the processes in the near-surface layer of the ocean and their visibility from space. Passive acoustic methods for monitoring short surface waves have significantly progressed. Of importance for climate research, processes in the near-surface layer of the ocean contribute to errors in satellite estimates of sea surface temperature trends. Due to growing applications of near-surface science, it is anticipated that more students will be trained in this area of research. Therefore this second edition of the monograph is closer to a textbook format.

Introduction.- Sea Surface Microlayer.- Near-Surface Turbulence.- Fine Structure and Microstructure.- Spatially Varying and Coherent Structures.- High Wind Speed Regime.- Applications.

Alexander Soloviev is a Professor at the Nova Southeastern University Oceanographic Center, Dania Beach, FL. He is also associated with the University of Miami Rosenstiel School of Marine and Atmospheric Science and Cooperative Institute for Marine and Atmospheric Studies. Soloviev participated in several major oceanographic and air-sea interaction experiments (POLYMODE, JASIN, FGGE, TOGA/COARE, GASEX) and is the author and co-author of more than 70 research articles published in peer-reviewed journals. He has been the Principal Investigator on a number of research projects funded by the U.S. federal government and private industry.

Roger Lukas is Professor Emeritus of Oceanography at the University of Hawaii, where he taught courses in large- and small-scale air-sea interaction. His research has included studies of Pacific equatorial currents and waves, their relationships to low-latitude boundary currents, the Asian-Australian monsoons, climate variations, the hydrological cycle and ocean salinity, small-scale air-sea interactions, and abyssal circulation. Lukas was co-leader of the international TOGA/COARE air-sea interaction experiment; helped to establish and maintain the long-term Hawaii Ocean Time-series; and helped motivate and construct the ALOHA Cabled Observatory. Lukas participated in numerous oceanographic cruises and has authored or co-authored more than 100 scientific articles, book chapters and edited volumes.

Updating the previous edition of the book due to remarkable results from synthetic aperture radar satellites, from satellites which measure sea surface salinity, and computational fluid dynamic models open new opportunities in understanding the processes in the near-surface layer of the ocean

Monitoring short surface waves has significantly progressed due to passive acoustic methods

Gives a comprehensive account of the structures and dynamics of the near-surface layer of the ocean

Clarifies theoretical concepts that are developed from fundamental physics and thermodynamics

Shows results of major air-sea interaction experiments (including those obtained with the participation of the authors), included in the analysis

Includes an overview of the results for important oceanographic applications such as remote sensing, climate, hurricane physics, oil spills, marine biology, optics and acoustics

Includes supplementary material: sn.pub/extras