Turbulence & diffusion in the atmosphere (with 2 MS DOS program diskettes) (corr. 2nd printing of the 1st edition 1998), Softcover reprint of the original 1st ed. 1997
Lectures in Environmental Sciences

Author:

Language: Anglais

73.84 €

In Print (Delivery period: 15 days).

Add to cartAdd to cart
Turbulence and Diffusion in the Atmosphere
Publication date:
185 p. · 15.5x23.5 cm · Paperback

Approximative price 89.99 €

Subject to availability at the publisher.

Add to cartAdd to cart
Turbulence & diffusion in the atmosphere (with 2 MS DOS program diskettes) (corr. 2nd printing of the 1st edition 1998)
Publication date:
186 p. · Hardback
The nature of turbulence. The Navier-Stokes equations. The neutral surface boundary layer. The energy equations of turbulence. Diabatic surface boundary layers. Homogeneous stationary boundary layers. Unconstrained boundary layers. Statistical representation of turbulence. Turbulent diffusion from discrete sources.
1 The Nature of Turbulence.- 1.1 Two-Dimensional Eddies in the Atmosphere.- 1.2 The Reynolds Number and Its Significance.- 1.3 The Reynolds Approach to the Equations of a Turbulent Fluid.- 1.4 Averaging the Equation of Continuity.- 1.5 Fluxes and the General Conservation Equation.- 1.6 The Closure Problem.- 1.7 First-Order Closure — Exchange Theory.- 1.8 Problems.- 2 The Navier—Stokes Equations.- 2.1 The Nature of Stress.- 2.2 Invariants of Fluid Motions.- 2.3 The Navier—Stokes Equations.- 2.4 Reynolds Number Similarity.- 2.5 Averaging the Navier—Stokes Equations.- 2.6 Problems.- 3 The Neutral Surface Boundary Layer.- 3.1 Overview of the Atmospheric Boundary Layer.- 3.2 Wind Distribution in the Neutral Surface Layer.- 3.3 Mean Flow in the Vicinity of the Surface.- 3.4 Miscellaneous Topics.- 3.5 Distribution of Passive Mean Properties.- 3.6 Problems.- 4 The Energy Equations of Turbulence.- 4.1 Energy of the Instantaneous State of a Fluid.- 4.2 Work Done on the Boundary.- 4.3 Heat.- 4.4 The Energy Equations and Energy Transformations.- 4.5 The Second Law of Thermodynamics.- 4.6 The Boussinesq Approximation.- 4.7 Open Systems.- 4.8 Energy Transformations in a Turbulent System.- 4.9 Problems.- 5 Diabatic Surface Boundary Layers.- 5.1 Heat Flux in the Surface Layer.- 5.2 The Richardson Number and the Criterion of Turbulence.- 5.3 Wind Profile Similarity.- 5.4 Profiles of Mean Temperature.- 5.5 Some Useful Relationships.- 5.6 Problems.- 6 Homogeneous Stationary Planetary Layers.- 6.1 The Ekman Spiral.- 6.2 A Two-Layer Model of the PBL.- 6.3 Universal Wind Hodograph and the Resistance Laws.- 6.4 The Mixed Layer of the Ocean.- 6.5 Problems.- 7 Unconstrained Boundary Layers.- 7.1 Flow downwind of a Change of Roughness.- 7.2 Non-stationary Boundary Layers.- 7.3 The Surface Heat Balance Equation.- 7.4 Daytime Conditions in the PBL.- 7.5 The Planetary Boundary Layer at Night.- 7.6 Model Simulation of the PBL.- 7.7 Problems.- 8 Statistical Representation of Turbulence I.- 8.1 Scaling Statistical Variables in the PBL.- 8.2 Vertical Distributions of the Variances.- 8.3 Problems.- 9 Statistical Representation of Turbulence II.- 9.1 Spectrum and Cross Spectrum of Turbulence.- 9.2 Spatial Representation of Turbulence.- 9.3 The Equilibrium Theory of Turbulence.- 9.4 The Inertial Subrange.- 9.5 Surface Layer Velocity Component Spectra.- 9.6 Mixed Layer Velocity Component Spectra.- 9.7 Spectra of Scalar Quantities Including Temperature.- 9.8 Cospectra and Quadrature Spectra.- 9.9 Problems.- 10 Turbulent Diffusion from Discrete Sources.- 10.1 Morphology of Smoke Plumes.- 10.2 Continuity Principles.- 10.3 Fickian Diffusion.- 10.4 The Gaussian Distribution Function.- 10.5 Taylor’s Diffusion Equation.- 10.6 Spectral Representation of Taylor’s Equation.- 10.7 Stability Parameters.- 10.8 Gaussian Plume Models.- 10.9 Estimations Based on Taylor’s Equation.- 10.10 Monte Carlo Models.- 10.11 Instantaneous Point Sources.- 10.12 Problems.- Appendix A. Derivation of the Tubulent Energy Equations.- A.1 Equations for the Instantaneous Energy.- A.2 The Equation of Mean Internal Energy.- A.3 The Mean Total Kinetic Energy Equation.- A.4 The Equation for the Energy of Mean Motion.- A.5 The Turbulent Kinetic Energy Equation.- Appendix B. Dimensional Analysis and Scaling Principles.- B.1 Checking Equations for Errors.- B.2 Inferring an Unknown Relationship.- B.3 Turkey Eggs, Anybody?.- B.4 Problems.- Appendix C. Matching Theory and the PBL Resistance Laws.- Appendix D. Description of the Planetary Boundary Layer Simulation Model.- D.1 Architecture of the Model.- D.2 Surface Boundary Condition.- D.3 The Free Convection Closure Scheme.- D.4 Treatment of Cloud Formation.- D.5 Treatment of Infrared Radiation.- Appendix E. A Monte Carlo Smoke Plume Simulation.- References.
This book is written mainly for students of meteorology and atmospheric science who have had no previous experience in the subject, but basic knowledge of hydrodynamics is assumed. It introduces turbulence theory and modelling related to the structure of the atmopsheric boundary layer and includes methods for predicting the impact of industrial activities. Disks (PC) accompanying the book contain the supplementary computer programs.