Marginal Space Learning for Medical Image Analysis, 2014
Efficient Detection and Segmentation of Anatomical Structures

Authors:

Language: English

52.74 €

Subject to availability at the publisher.

Add to cartAdd to cart
Marginal Space Learning for Medical Image Analysis
Support: Print on demand

52.74 €

Subject to availability at the publisher.

Add to cartAdd to cart
Marginal Space Learning for Medical Image Analysis. Efficient Detection and Segmentation of Anatomical Structures
268 p. · 15.5x23.5 cm · Hardback

Automatic detection and segmentation of anatomical structures in medical images are prerequisites to subsequent image measurements and disease quantification, and therefore have multiple clinical applications. This book presents an efficient object detection and segmentation framework, called Marginal Space Learning, which runs at a sub-second speed on a current desktop computer, faster than the state-of-the-art. Trained with a sufficient number of data sets, Marginal Space Learning is also robust under imaging artifacts, noise and anatomical variations. The book showcases 35 clinical applications of Marginal Space Learning and its extensions to detecting and segmenting various anatomical structures, such as the heart, liver, lymph nodes and prostate in major medical imaging modalities (CT, MRI, X-Ray and Ultrasound), demonstrating its efficiency and robustness.

Introduction.- Marginal Space Learning.- Comparison of Marginal Space Learning and Full Space Learning in 2D.- Constrained Marginal Space Learning.- Part-Based Object Detection and Segmentation.- Optimal Mean Shape for Nonrigid Object Detection and Segmentation.- Nonrigid Object Segmentation: Application to Four-Chamber Heart Segmentation.- Applications of Marginal Space Learning in Medical Imaging.- Conclusions and Future Work.
Presents an award winning image analysis technology (Thomas Edison Patent Award, MICCAI Young Investigator Award) that achieves object detection and segmentation with state-of-the-art accuracy and efficiency Flexible, machine learning-based framework, applicable across multiple anatomical structures and imaging modalities Thirty five clinical applications on detecting and segmenting anatomical structures such as heart chambers and valves, blood vessels, liver, kidney, prostate, lymph nodes, and sub-cortical brain structures, in CT, MRI, X-Ray and Ultrasound. Includes supplementary material: sn.pub/extras