Advances in Solar Energy, Softcover reprint of the original 1st ed. 1986
An Annual Review of Research and Development Volume 3

Author:

Language: English

Approximative price 52.74 €

In Print (Delivery period: 15 days).

Add to cartAdd to cart
Publication date:
486 p. · 17.8x25.4 cm · Paperback
Advances in Solar Energy is back on schedule. Volume III contains a number of interesting reviews of the different fields in solar energy conversion. We appreciate the many encouraging comments received after the second volume appeared and have incorporated some of the suggested changes. Even though most of the reviews are invited through our editors, we are always open to suggestion about subjects of importance that are ready for a com­ prehensive and critical review and have not been recently covered, or about potential authors. I would like to take this opportunity to thank Professor John A. Duffie for his invaluable help in starting the Advances in Solar Energy series. Although he has recently taken full responsibility as editor-in-chief for the Solar Energy Journal, his continued assistance as a member of the Board of Editors is greatly appreciated. The diligent work of the many active editors is gratefully acknowledged and constitutes the basis for a valuable review periodical with outstanding contributions. The typesetting was done by Sandra Pruitt in the Delaware office, using the TEX-program with laser print-out. Her organization and patience in coordinating with the authors, and her technical skill and diligence in preparing the submitted copy permitted the timely and high-quality assembly of this production. We wish to commend her for efforts well beyond the call of duty. The accommodating help from Plenum Press and its production staff deserves our grateful acknowledgement.
1 Advanced Materials and Device Analytical Techniques.- 1.1 Introduction.- 1.2 Volume Analysis.- 1.2.1 Fundamental Principles.- 1.2.1.1 Generation Volume.- 1.2.1.2 X-Ray Detection.- 1.2.1.3 Spectral Resolution.- 1.2.1.4 Detection Limit and Energy Range.- 1.2.2 Quantitative Analysis.- 1.3 Surface Analysis Techniques.- 1.3.1 Auger Electron Spectroscopy.- 1.3.1.1 Fundamental Principles.- 1.3.1.1.1 The Auger Process.- 1.3.1.1.2 Auger Electron Escape Depth.- 1.3.1.1.3 Matrix and Chemical Effects.- 1.3.1.2 Experimental Methods.- 1.3.1.2.1 Cylindrical Mirror Analyzer.- 1.3.1.2.2 Detection Methods.- 1.3.1.3 Quantitative Auger Analysis.- 1.3.2 Electron Energy Loss Spectroscopy.- 1.3.3 X-Ray Photoelectron Spectroscopy.- 1.3.3.1 Fundamental Principles.- 1.3.3.1.1 The XPS Process.- 1.3.3.1.2 Chemical Shifts and XPS Spectra.- 1.3.3.2 Experimental Methods.- 1.3.3.3 Quantitative X-Ray Photoelectron Spectroscopy.- 1.3.4 Secondary Ion Mass Spectrometry.- 1.3.4.1 Fundamental Principles.- 1.3.4.2 SIMS Mechanisms.- 1.3.4.2.1 Incident Ion Probes.- 1.3.4.2.2 SIMS Spectra.- 1.3.4.3 Experimental Methods.- 1.3.4.4 Sputter-Depth Profiling.- 1.3.4.5 Quantitative SIMS.- 1.3.4.5.1 Physical Models.- 1.3.4.5.2 Calibration Techniques.- 1.3.5 Rutherford Backscattering Spectrometry.- 1.4 Electron Beam Induced Current and Voltage.- 1.4.1 Basic Principles.- 1.4.2 Experimental Details.- 1.4.3 Minority-Carrier Diffusion Length and Surface Recombination Velocity Determinations.- 1.5 Applications.- 1.5.1 Contacts to Gallium Arsenide.- 1.5.2 Oxide and Interface Properties: Indium Phosphide.- 1.5.3 Initial Oxidation of Copper-Indium-Diselenide.- 1.5.4 Copper-Indium-Selenide: Composition and Interfaces.- 1.5.4.1 Cu-Ternary Absorber Layer.- 1.5.4.2 Layer Composition: Quantification.- 1.5.4.3 Heterointerface Formation.- 1.5.5 Compositional Analysis of Silicon.- 1.5.5.1 Hydrogen Passivation.- 1.5.5.2 Diffusion Coefficients.- 1.6 Acknowledgements.- 1.7 References.- 2 Thermo Syphon Solar Energy Water Heaters.- 2.1 Abstract.- 2.2 Introduction.- 2.3 Historical Overview.- 2.4 Analytical Models of Thermosyphon Solar Energy Water Heaters.- 2.5 Experimental Investigations.- 2.6 Determination of Thermosyphonic Circulation Rate.- 2.7 Single and Multiple-Pass Modes of Operation.- 2.8 Withdrawal of Heated Water.- 2.9 Thermal Rectification.- 2.10 Compact Natural-Circulation, Solar-Energy Water Heaters.- 2.11 Indirect Thermosyphon Solar Water Heaters.- 2.12 Architectural Integration.- 2.13 Comparison of Thermosyphons with Other Types of Solar Water Heaters.- 2.14 Testing Methods.- 2.15 Thermosyphon Hydronic Cooling.- 2.16 Conclusion.- 2.17 Acknowledgements.- 2.18 References.- 3 Passive Solar Energy for Non-Residential Buildings - Performance Overview.- 3.1 Introduction.- 3.2 Energy Performance.- 3.2.1 Decrease from Non-Solar Benchmarks.- 3.2.2 Increase from Predictions.- 3.3 Economics.- 3.3.1 Construction Cost Comparison.- 3.3.2 Operating Cost Comparison.- 3.3.3 Other Cost Related Issues.- 3.4 Occupancy.- 3.4.1 Satisfaction.- 3.4.2 Changed Building Occupancy and Use.- 3.4.3 Changed Building Operations.- 3.5 Results and Implications of Select Design Strategies.- 3.5.1 Retrofits.- 3.5.2 Daylighting.- 3.5.3 Thermal Mass Issues.- 3.5.4 Natural Ventilation.- 3.5.5 Climate Dependency.- 3.5.6 Reliability and Maintainability.- 3.5.7 System Integration.- 3.6 Conclusions.- 3.7 Acknowledgments.- 3.8 Appendix.- 3.9 References.- 4 Physics of Solar Selective Surfaces.- 4.1 Introduction.- 4.1.1 Organization of Paper.- 4.2 Selective Solar Absorbers.- 4.2.1 Ideal Selective Solar Absorber.- 4.2.2 Figures of Merit.- 4.2.3 Types of Selective Surfaces.- 4.3 The Emissivity of Metals.- 4.4 Solar Selective Reflectors.- 4.4.1 Transparent Semiconductors.- 4.4.2 Ultrathin Metal Films.- 4.5 Solar Selective Absorbers.- 4.5.1 Performance Limits of Ideal Selective Absorbers.- 4.5.2 Selective Absorber Materials.- 4.5.2.1 Semiconductor Selective Absorbers.- 4.5.2.2 Metallic Absorbers - Bulk Metals.- 4.5.2.3 Metal Absorbers - Small Particles.- 4.5.2.4 Summary.- 4.6 Use of Optical Effects in Selective Surface.- 4.6.1 Optical Enhancement of Spectral Selectivity.- 4.6.1.1 Thin Film Interference.- 4.6.1.2 Optical Trapping and Wavefront Discrimination.- 4.6.2 Reduction of Front Surface Reflection.- 4.6.2.1 Antireflection Coatings.- 4.6.2.2 Optical Transition Layers.- 4.6.3 Summary.- 4.7 Conclusions.- 4.8 Acknowledgement.- 4.9 References.- 5 Natural Air-Conditioning Systems.- 5.1 Abstract.- 5.2 Introduction.- 5.2.1 The Scope of This Article.- 5.2.2 The Methodology Employed to Review the Recent Research.- 5.2.3 Thermal Comfort.- 5.2.4 Classification of Natural Air-Conditioning Systems.- 5.3 Part 1, Natural Air-Conditioning Systems Employed Mostly In Hot/Arid Regions.- 5.3.1 Historical Review.- 5.3.1.1 Wind Towers and Baud-Geers.- 5.3.1.2 Domed Roofs.- 5.3.1.3 Reduction of Heat Gains of Buildings and the Use of Atria.- 5.3.1.4 Use of Underground Shelters.- 5.3.1.5 Storage of Chilled Water for Summer Use.- 5.3.1.6 Production and Storage of Ice for Summer Use.- 5.3.2 Natural Air-Conditioning Systems with No Thermal (Cool) Storage.- 5.3.2.1 An Improved Design of Wind Tower or Baud-Geer.- 5.3.2.1.1 Disadvantages of the Conventional Designs.- 5.3.2.1.2 Presentation of the New Design.- 5.3.2.2 A Modified Wind Tower Design.- 5.3.2.3 Indirect Evaporative Cooling Systems.- 5.3.2.4 Evaporative Cooling of Moist Internal Surfaces.- 5.3.3 Natural Air-Conditioning Systems with Daily Storage of Coolness….- 5.3.3.1 Storage of Coolness in Building Structure.- 5.3.3.1.1 Storage of Coolness in Moderate Climiates.- 5.3.3.1.2 Storage of Coolness in Hot/Arid Climates.- 5.3.3.1.3 Weekly Storage of Coolness in Heavy Brick and Adobe Structures.- 5.3.3.2 Storage of Coolness in Roof Ponds.- 5.3.3.2.1 Estimation of Clear Sky Emissivity and Sky Temperature.- 5.3.3.2.2 Sky Radiation Combined With Evaporative Cooling.- 5.3.3.3 Other Approaches for Reducing Ceiling Temperatures.- 5.3.3.4 Evaporative Cooling With Rockbed Storage.- 5.3.4 Natural Air-Conditioning Systems Employing Seasonal Storage of Coolness.- 5.3.4.1 Seasonal Storage of Coolness in Ground.- 5.3.4.1.1 Earth-Coupled Shelters.- 5.3.4.1.2 The Use of Earth-Air Heat Exchangers.- 5.3.4.2 Seasonal Storage of Coolness in Water.- 5.3.4.2.1 Seasonal Storage of Coolness in Water in Aquifers.- 5.3.4.3 Seasonal Storage of Coolness in the Form of Ice.- 5.3.4.3.1 Analysis of Iranian Natural Ice Makers or Yakh-Chauls.- 5.3.4.3.2 Ice Production and Storage in Deep Underground Ice Ponds.- 5.3.4.3.3 Ice Production through the Utilization of Heat Pipe Technology.- 5.3.4.3.4 Project Snowbowl and Other Ice Production Research in Canada.- 5.3.4.3.5 Project “Fabrikglace”.- 5.3.4.3.6 Ice Production for Precooling of Vegetables.- 5.3.4.4 Seasonal Storage of Coolness in the Form of Frozen Soil.- 5.3.4.5 Other Forms of Seasonal Storage of Coolness.- 5.4 Part 2, Natural Air-Conditioning Systems Employed Mostly In Hot/Humid Regions.- 5.4.1 Airflow through Buildings Due to Wind Effects.- 5.4.1.1 Domed Roofs with Openings in Their Crowns.- 5.4.1.2 A Special Tent Structure for Ventilative Cooling.- 5.4.1.3 Natural Ventilation of Wind Towers or Baud-Geers.- 5.4.1.4 The Use of Wing Walls to Enhance Ventilation.- 5.4.2 Ventilation and Air Motion in Buildings to Reduce the Cooling Requirements.- 5.4.2.1 Ventilation for Structural Cooling to Reduce the Cooling Load of Buildings.- 5.4.2.2 The Use of Ceiling Fans to Reduce the Cooling Energy Requirements.- 5.4.3 The Effect of Ambient Water Vapor in Energy Analysis of Buildings.- 5.4.4 Importance of Dehumidification in Hot/Humid Regions.- 5.4.4.1 Special Dehumidification Systems.- 5.5 Conclusions.- 5.6 References.- 6 The Solar Ultraviolet — A Brief Review.- 6.1 Introduction.- 6.2 Environmental Effects.- 6.3 Historical Interest.- 6.4 Laboratory Sources.- 6.5 Sensors.- 6.5.1 Photographic Detectors.- 6.5.2 Photoelectric Devices.- 6.5.3 Solid State Detectors.- 6.6 Instrumentation.- 6.7 Ground Based Measurements.- 6.8 Satellite and Rocket Data.- 6.9 Conclusions.- 6.10 Bibliography.- 7 New Technologies in the Production of Woody Crops for Energy In The United States.- 7.1 Abstract.- 7.2 Introduction.- 7.3 Extent and Dynamics of Traditional Forest Inventories.- 7.3.1 Summary.- 7.4 Potential of Conventional Plantation Forestry.- 7.5 Concept and Technology of Short-Rotation Intensive Culture.- 7.5.1 Density, Age, and Yield Relationships: Seedling (First) Rotation.- 7.5.2 Density, Age, and Yield Relationships: Coppice Rotation.- 7.5.3 Summary.- 7.6 Sric Species and Their Management.- 7.6.1 Summary.- 7.7 Harvesting Developments In Short-Rotation Intensive Culture.- 7.7.1 Description of Some Short-Rotation Harvesting Systems.- 7.7.1.1 Gathering Mechanisms.- 7.7.1.2 Severing Mechanisms.- 7.7.1.3 Conveying Mechanisms.- 7.7.1.4 Processes Mechanisms.- 7.7.2 Summary.- 7.8 Economic Competitiveness of Sric Biomass Feedstocks.- 7.8.1 Summary.- 7.9 Risk Reduction.- 7.9.1 Summary.- 7.10 Conclusions and Recommendations.- 7.11 Acknowledgement.- 7.12 Appendix I — Conversion Factors.- 7.13 Appendix II.- 7.14 References.- 8 Biomass for Fuel and Food — A Parallel Necessity.- 8.1 Summary.- 8.2 Biomass for Energy.- 8.3 Woodfuel.- 8.3.1 Investment in Woodfuel.- 8.3.2 Tree Planting Projects.- 8.3.3 Farm Forestry.- 8.3.4 Community Forestry.- 8.3.5 Family Tree Planting.- 8.3.6 Intensive Energy Forestry.- 8.4 Fuel Alcohol.- 8.4.1 Brazil.- 8.4.2 Zimbabwe.- 8.4.3 USA.- 8.4.4 Sweden.- 8.4.5 Israel.- 8.5 Crops for Energy.- 8.5.1 Sugarcane.- 8.5.2 Sorghum.- 8.5.3 Water Hyacinth.- 8.5.4 Palm.- 8.5.5 Euphorbia.- 8.6 Appendix — Glossary of Abbreviations.- 8.7 References.