Dynamical Analysis of Non-Fourier Heat Conduction and Its Application in Nanosystems, Softcover reprint of the original 1st ed. 2016
Springer Theses Series

Author:

Language: English

105.49 €

In Print (Delivery period: 15 days).

Add to cartAdd to cart
Dynamical Analysis of Non-Fourier Heat Conduction and Its Application in Nanosystems
Publication date:
Support: Print on demand

Approximative price 105.49 €

In Print (Delivery period: 15 days).

Add to cartAdd to cart
Dynamical Analysis of Non-Fourier Heat Conduction and Its Application in Nanosystems
Publication date:
Support: Print on demand

This thesis studies the general heat conduction law, irreversible thermodynamics and the size effect of thermal conductivity exhibited in nanosystems from the perspective of recently developed thermomass theory. The derivation bridges the microscopic phonon Boltzmann equation and macroscopic continuum mechanics. Key concepts such as entropy production, temperature and the Onsager reciprocal relation are revisited in the case of non-Fourier heat conduction. Lastly, useful expressions are extracted from the picture of phonon gas dynamics and are used to successfully predict effective thermal conductivity in nanosystems.

Introduction.- Dynamical governing equation of Non-Fourier Heat Conduction.- General Entropy Production based on Dynamic Analysis.- Non-Equilibrium Temperature in Non-Fourier Heat Conduction.- Dynamic Analysis of Onsager Reciprocal Relations (ORR).- Dynamical Analysis of Heat Conduction in Nanosystems and Its Application.- Conclusion.
Dr. Dong received his B. S. in Mechnical Engineering in 2008 and Ph. D. degree in Engineering Physics in 2014, both from Tsinghua University.

His research areas are focused on:

1. Nano-scale Heat Transfer: Develop a generalized heat conduction law based on the thermomass theory and the phonon Boltzmann equation, which can predict the nanoscale heat conduction.
2. General Theory for Transport Process and Non-equilibrium Thermodynamics: Revisit the non-equilibrium thermodynamics based on the thermomass theory, Propose a new picture for the entropy production and Onsager reciprocal relations.

AWARDS/HONORS

1. First Class Award for Outstanding PHD Thesis of Tsinghua University 2014 (25 of 889 Graduated PHD students)
2. Wu Zhonghua Scholarship for graduates 2012 (13 in the Society of Engineering Thermophysics of China)
3. First Class Comprehensive Scholarship for graduates 2013 and 2011
4. First Class Award for Outstanding Youth Conference Paper in Annual Conference of Chinese society of Engineering Thermophysics, Heat and Mass Transfer 2011 (Only 2 for over 600 Papers)
5. Outstanding Graduates of Tsinghua University 2008 (56 of 3044 Students)

PUBLICATIONS

[1] Y. Dong, B.Y. Cao and Z. Y. Guo. Ballistic–diffusive phonon transport and size induced anisotropy of thermal conductivity of silicon nanofilms. Physica E: Low-dimensional Systems and Nanostructures, 66, 1 (2015).
[2] Y. Dong and Z. Y. Guo. Hydrodynamic modeling of heat conduction in nanoscale systems. Journal of Nanoscience and Nanotechnology, 15, 3229 (2014)
[3] Y. Dong, B.Y. Cao and Z. Y. Guo. Size dependent thermal conductivity of Si nanosystems based on phonon gas dynamics. Physica E: Low-dimensional Systems and Nanostructures, 56, 256 (2014).
[4] Y. C. Hua, Y. Dong and B. Y. Cao. Monte Carlo simulation of phonon ballistic diffusive heat conduction in silicon nano film. Acta Physica Sinica, 62(24), 244401 (2013). (In Chinese)
[
Nominated as Outstanding PhD thesis by Tsinghua University, China Derives the general heat conduction law from both the phonon Boltzmann equation and continuum mechanics Proposes novel derivations from the macroscopic perspective for general entropy production, non-equilibrium temperature and Onsager Reciprocal Relations Obtains explicit expressions for the size-dependent effective thermal conductivity of nanosystems Includes supplementary material: sn.pub/extras