Kimberlites, Orangeites, and Related Rocks, Softcover reprint of the original 1st ed. 1995

Author:

Language: English
Cover of the book Kimberlites, Orangeites, and Related Rocks

Subject for Kimberlites, Orangeites, and Related Rocks

Approximative price 52.74 €

In Print (Delivery period: 15 days).

Add to cartAdd to cart
Publication date:
410 p. · 17.8x25.4 cm · Paperback
Kimberlites and orangeites. Mineralogy of orangeites. Geochemistry of orangeites. Petrogenesis of orangeites and kimberlites.
1. Kimberlites and Orangeites.- 1.1. Etymology of Group I and II Kimberlites.- 1.2. Definitions of Cryptogenic and Primary Phases.- 1.3. The Hybrid Nature of Kimberlites and Orangeites.- 1.4. Philosophy and Principles of Classification.- 1.4.1. Modal versus Genetic Classifications.- 1.4.2. Petrological Clans.- 1.4.3. The Lamprophyre Clan.- 1.4.4. Mineralogical—Genetic Nomenclature within Petrological Clans.- 1.5. Mineralogical Comparisons between Kimberlites and Orangeites.- 1.6. Definitions of Orangeites and Kimberlites.- 1.6.1. Orangeites.- 1.6.2. Kimberlites.- 1.7. Age and Distribution of Orangeites.- 1.8. Occurrences of Orangeites.- 1.8.1. Finsch.- 1.8.2. Barkly West Region.- 1.8.2.1. Bellsbank.- 1.8.2.2. Sover.- 1.8.2.3. Newlands.- 1.8.2.4. Pniel.- 1.8.3. Boshof District.- 1.8.3.1. Roberts Victor.- 1.8.3.2. New Elands.- 1.8.4. Winburg District.- 1.8.5. Kroonstad District.- 1.8.6. Swartruggens District.- 1.8.7. Dokolwayo.- 1.8.8. Prieska District.- 1.8.9. Summary.- 1.9. Textural—Genetic Classifications of Petrological Clans….- 1.9.1. Kimberlites.- 1.9.1.1. Crater Facies.- 1.9.1.2. Diatreme Facies.- 1.9.1.3. Hypabyssal Facies.- 1.9.1.4. Spatial Relationships between Diatreme and Hypabyssal Facies Kimberlites.- 1.9.2. Orangeites.- 1.9.3. Melilitite Clan.- 1.10. Petrographic Characteristics of Orangeite.- 1.11. Petrographic Differences with Respect to Kimberlites.- 1.12. Petrographic Differences with Respect to Lamproites.- 2. Mineralogy of Orangeites.- 2.1. Mica.- 2.1.1. Paragenesis.- 2.1.2. Composition of Primary Mica.- 2.1.2.1. Al2O3—TiO2 Variation.- 2.1.2.2. Al2O3—FeOT Variation.- 2.1.2.3. Macrocrysts versus Microphenocrysts.- 2.1.2.4. Minor Elements.- 2.1.2.5. Trace Elements.- 2.1.3. Aluminous Mica—Microxenoliths.- 2.1.4. Aluminous Biotite Macrocrysts.- 2.1.5. Micas from the Swartruggens Male Lamprophyre.- 2.1.6. Summary of Mica Compositional Variation.- 2.1.7. Solid Solutions in Orangeite Mica.- 2.1.8. Mica in Kimberlites.- 2.1.8.1. Macrocrysts.- 2.1.8.2. Primary Micas.- 2.1.8.3. Summary of Kimberlite Mica Compositional Variation.- 2.1.9. Mica in Lamproites.- 2.1.10. Mica in Minettes.- 2.1.11. Mica in Ultramafic Lamprophyres.- 2.2. Clinopyroxene.- 2.2.1. Paragenesis.- 2.2.2. Composition.- 2.2.2.1. Diopside.- 2.2.2.2. Titanian Aegirine.- 2.2.2.3. Minor Elements.- 2.2.3. Pyroxenes in the Swartruggens Male Lamprophyre..- 2.2.4. Megacrystal Pyroxenes.- 2.2.5. Comparison with Pyroxenes in Kimberlites.- 2.2.6. Comparisons with Pyroxenes in Lamproites.- 2.2.7. Comparisons with Pyroxenes in Ultramafic Lamprophyres.- 2.2.8. Comparisons with Pyroxenes from Minettes.- 2.3. Olivine.- 2.3.1. Paragenesis.- 2.3.2. Composition.- 2.3.3. Comparisons with Olivines in Kimberlites.- 2.3.4. Comparisons with Olivines in Lamproites.- 2.4. Spinel.- 2.4.1. Paragenesis.- 2.4.2. Composition.- 2.4.3. Comparisons with Kimberlite Spinels.- 2.4.4. Spinel Compositional Variation in Lamproites and Lamprophyres.- 2.5. Potassium Barium Titanates.- 2.5.1. Hollandite.- 2.5.1.1. Paragenesis.- 2.5.1.2. Composition.- 2.5.1.3. Comparison with Hollandites from Lamproites, Kimberlites, and Other Potassic Rocks.- 2.5.2. Potassium Triskaidecatitanate.- 2.5.3. Barium Pentatitanate.- 2.6. Perovskite.- 2.6.1. Paragenesis.- 2.6.2. Composition.- 2.6.3. Comparison with Perovskites from Kimberlite.- 2.6.4. Comparison with Lamproite Perovskite.- 2.7. Phosphates.- 2.7.1. Apatite.- 2.7.1.1. Paragenesis.- 2.7.1.2. Composition.- 2.7.1.3. Comparison with Kimberlite and Lamproite Apatite.- 2.7.2. Daqingshanite.- 2.7.3. Monazite.- 2.7.4. Sr—REE Phosphate.- 2.8. Amphiboles—Potassium Richterite.- 2.8.1. Paragenesis.- 2.8.2. Composition.- 2.8.3. Comparison with Potassium Richterite in Lamproite and Other Potassic Rocks.- 2.9. Potassium Feldspar.- 2.10. Ilmenite.- 2.10.1. Comparison with Groundmass Ilmenites from Kimberlites.- 2.10.2. Comparison with Ilmenites in Lamproites.- 2.11. Rutile.- 2.12. Zirconium Silicates.- 2.12.1. Zircon.- 2.12.2. Wadeite.- 2.12.3. Zirconium-Bearing Garnet.- 2.12.4. Calcium Zirconium Silicate.- 2.13. Carbonates.- 2.13.1. Calcite.- 2.13.2. Dolomite.- 2.13.3. Other Carbonates.- 2.14. Other Minerals.- 2.15. Summary.- 3. Geochemistry of Orangeites.- 3.1. Contamination and Alteration.- 3.2. Primary Magma Compositions.- 3.3. Major Element Geochemistry.- 3.3.1. Unevolved Orangeites.- 3.3.2. Mineralogical Controls on the Major Element Geochemistry.- 3.3.3. Evolved Orangeites.- 3.3.4. Comparison with Kimberlites.- 3.3.5. Comparison with Lamproites.- 3.4. First-Period Transition Elements.- 3.5. Incompatible Elements.- 3.5.1. Alkaline Earths.- 3.5.2. Second-and Third-Period Transition Elements.- 3.5.2.1. Zirconium and Hafnium.- 3.5.2.2. Niobium and Tantalum.- 3.5.3. Thorium and Uranium.- 3.5.4. Rare Earth Elements.- 3.5.5. Alkali Elements.- 3.5.6. Lead.- 3.6. Inter-Element Relationships.- 3.6.1. Extended Incompatible Element Distribution Diagrams.- 3.6.2. Ce/Y and La/Yb versus Zr/Nb.- 3.7. Peridotite Mixing and Assimilation.- 3.8. Radiogenic Isotopes.- 3.8.1. Strontium and Neodymium.- 3.8.2. Lead.- 3.9. Stable Isotopes.- 3.10. Summary.- 4. Petrogenesis of Orangeites and Kimberlites.- 4.1. Geochemical Models of Orangeite Petrogenesis Involving Limited Partial Melting of Lherzolitic Sources.- 4.1.1. Earlier Hypotheses.- 4.1.2. Melting of Enriched Mantle and Peridotite Entrainment.- 4.1.3. Three-Stage Processes—Depletion, Enrichment, and Melting.- 4.2. Experimental Evidence Pertaining to Orangeite Petrogenesis.- 4.2.1. Liquidus Experiments on Orangeite Compositions.- 4.2.2. Liquidus Experiments on Lamproite Compositions.. •.- 4.2.3. Melting of Mica Pyroxenites.- 4.2.4. Phase Relations in the System: Phlogopite–Potassium Richterite–Apatite.- 4.3. Petrogenesis of Archetypal Kimberlites—Recent Hypotheses...- 4.3.1. Carbonated Lherzolite Sources.- 4.3.1.1. Volatile Fluxing—Diapiric Model.- 4.3.1.2. Partial Melting of Magnesite Peridotite.- 4.3.1.3. Partial Melting of Carbonated Phlogopite Lherzolite.- 4.3.1.4. Carbonates in the Mantle?.- 4.3.2. Liquidus Experimental Studies at High Pressures.- 4.3.2.1. Liquidus Studies of Natural Kimberlite.- 4.3.2.2. Liquidus Studies of Synthetic Kimberlite.- 4.3.2.3. Summary—A Cautionary Note.- 4.4. Geodynamic Models of Kimberlite and Orangeite Genesis.- 4.4.1. Transition Zone Melting.- 4.4.2. Metasome Melting and Mantle Plumes.- 4.4.3. Hot-Spot Melting.- 4.4.4. Partial Melting of Heterogeneous Lithosphere.- 4.4.5. Redox Melting.- 4.5. Petrogenesis of the Orangeite Clan.- 4.5.1. Development of the Source.- 4.5.1.1. Continental Roots.- 4.5.1.2. Depth of Origin of Orangeite Magmas.- 4.5.1.3. Compositional Heterogeneities—Veined Harzburgites.- 4.5.2. Melting of the Source.- 4.5.2.1. Causes of Melting.- 4.5.2.2. Melting of Veined Lithosphere.- 4.5.3. Melt Segregation, Contamination, and Ascent.- 4.5.4. Low-Pressure and Post-Emplacement Crystallization.- 4.5.5. Summary.- 4.6. Petrogenesis of the Kimberlite Clan.- 4.6.1. Nature of the Source and Depth of Melting.- 4.6.2. The Megacryst Problem.- 4.6.3. Contamination of Kimberlites in the Mantle.- 4.6.4. Post-Emplacement Crystallization.- 4.6.5. Summary.- 4.7. Relationships of Orangeites to Kimberlites, Lamproites, and Other Ultrapotassic Magmas.- 4.7.1. Kimberlites.- 4.7.2. Lamproites.- 4.7.3. Other Ultrapotassic Magmas.- 4.7.4. Summary.- 4.8. Primary Diamond Deposits.- Postscript.- References.