Mechanics of materials (8th ed )


Language: Anglais
Cover of the book Mechanics of materials (8th ed )

Approximative price 144.30 €

In Print (Delivery period: 12 days).

Add to cartAdd to cart
Publication date:
888 p. · 20.3x23.5 cm · Hardback

Mechanics of Materials, 8e, is intended for undergraduate Mechanics of Materials courses in Mechanical, Civil, and Aerospace Engineering departments.

Containing Hibbeler's hallmark student-oriented features, this text is in four-color with a photorealistic art program designed to help students visualize difficult concepts. A clear, concise writing style and more examples than any other text further contribute to students' ability to master the material.

Click here for the Video Solutions that accompany this book. Developed by Professor Edward Berger, University of Virginia, these are complete, step-by-step solution walkthroughs of representative homework problems from each section of the text.

Chapter 1: Stress

1.1 Introduction

1.2 Equilibrium of a Deformable Body

1.3 Stress

1.4 Average Normal Stress in an Axially Loaded Bar

1.5 Average Shear Stress

1.6 Allowable Stress

1.7 Design of Simple Connections

Chapter 2: Strain

2.1 Deformation

2.2 Strain

Chapter 3: Mechanical Properties of Materials

3.1 The Tension and Compression Test

3.2 The Stress-Strain Diagram

3.3 Stress-Strain Behavior of Ductile and Brittle Materials

3.4 Hooke's Law

3.5 Strain Energy

3.6 Poisson's Ratio

3.7 The Shear Stress-Strain Diagram

3.8 Failure of Materials Due to Creep and Fatigue

Chapter 4: Axial Load

4.1 Saint-Venant's Principle

4.2 Elastic Deformation of an Axially Loaded Member

4.3 Principle of Superposition

4.4 Statically Indeterminate Axially Loaded Member

4.5 The Force Method of Analysis for Axially Loaded Members

4.6 Thermal Stress

4.7 Stress Concentrations

4.8 Inelastic Axial Deformation

4.9 Residual Stress

Chapter 5: Torsion

5.1 Torsional Deformation of a Circular Shaft

5.2 The Torsion Formula

5.3 Power Transmission

5.4 Angle of Twist

5.5 Statically Indeterminate Torque-Loaded Members

5.6 Solid Noncircular Shafts

5.7 Thin-Walled Tubes Having Closed Cross Sections

5.8 Stress Concentration

5.9 Inelastic Torsion

5.10 Residual Stress

Chapter 6: Bending

6.1 Shear and Moment Diagrams

6.2 Graphical Method for Constructing Shear and Moment Diagrams

6.3 Bending Deformation of a Straight Member

6.4 The Flexure...