Pulse Gas-Discharge Atomic and Molecular Lasers, 1976
The Lebedev Physics Institute Series, Vol. 81

Coordinator: Basov N. G.

Language: English
Cover of the book Pulse Gas-Discharge Atomic and Molecular Lasers

Approximative price 52.74 €

In Print (Delivery period: 15 days).

Add to cartAdd to cart
Publication date:
186 p. · 21x27.9 cm · Paperback
This volume contains the results of many years of investigations of pulse gas-discharge lasers carried out at the Optical Laboratory of the Lebedev Physics Institute in Moscow. The two papers report mainly experimental results obtained in studies of pulse lasers utilizing translations in metals (Isaev and Petrash) and electronic transitions in diatomic molecules (Kaslin and Petrash). Population inversion mechanisms and the principal properties of the lasers are considered. v CONTENTS Investigation of Pulse Gas-Discharge Lasers Utilizing Atomic Transitions A. A. Isaev and G. G. Petrash Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 §l. Efficiency in a Gas-Discharge Laser. ? . ? ? ? . . . . . ? ? ? . . ? ? . ? . . ? . ? . ? . 1 §2. Review of the Literature ? ? ? ? ? ? ? . ? ? ? ? ? ? . . ? ? . . . ? ? ? ? . ? ? ? ? . ? . . . ? 4 Chapter I. Kinetics of Output Power Saturation in a Three-Level System. ? ? ? ? ? ? ? ? 6 §1. Level Populations and Saturated Power in a Three-Level System. ? ? ? ? ? ? ? ? 7 §2. Absence of Decay of Laser Levels. ? ? ? ? ? ? . ? ? ? ? . ? . ? . ? ? ? ? ? ? ? ? ? ? ? ? ? 8 §3. Decay of Laser Levels by Emission of Spontaneous Radiation. ? ? ? ? .
Investigation of Pulse Gas-Discharge Lasers Utilizing Atomic Transitions A. A. Isaev and G. G. Petrash.- §1. Efficiency in a Gas-Discharge Laser.- §2. Review of the Literature.- I. Kinetics of Output Power Saturation in a Three-Level System.- §1. Level Populations and Saturated Power in a Three-Level System.- §2. Absence of Decay of Laser Levels.- §3. Decay of Laser Levels by Emission of Spontaneous Radiation.- §4. Decay of Laser Levels due to Collisions with Electrons.- §5. Pulse Superradiance due to Transitions from Resonance to Metastable Levels.- §6. Saturated Superradiance Power of Green Thallium Line.- II. Apparatus and Measurement Techniques.- §1. Gas-Discharge Tubes and System for Evacuation and Filling with Gases.- §2. Resonators, Mirrors, Superradiance.- §3. Pulse Power Supply System.- §4.Measurement of Spectral and Time Characteristics.- §5. Measurement of Electrical Characteristics of Discharges.- III. Pulse Laser Emission and Superradiance due to Transitions from Resonance to Metastable Levels in Atoms and Ions.- §1. Superradiance due to Transitions in Helium Atoms.- §2. Superradiance of Thallium Vapor.- §3. Pulse Superradiance due to Green Line of Thallium in TlI Vapor.- §4. Laser Emission and Superradiance due to Transitions in Lead.- §5. Superradiance in Mercury Vapor.- IV. Pulse Laser Emission and Superradiance due to 2p-1s Transitions in Inert Gases.- §1. Superradiance and Laser Emission due to Transitions in Neon.- §2. Superradiance and Laser Emission due to Transitions in Argon, Krypton,and Xenon.- Concluding Remarks.- §1. Pulse Lasers Utilizing Transitions from Resonance to Metastable Atomic Levels.- §2. Stimulated Emission due to Transitions in Ions.- §3. Pulse Laser Emission and Superradiance due to 2p-1s Transitions in Inert Gases.- §4. Conclusions.- Literature Cited.- Pulse Gas Lasers Utilizing Electronic Transitions in Diatomic Molecules V. M. Kaslin and G. G. Petrash.- §1. Characteristics of Lasers Utilizing Electronic Transitions in Molecules.- §2. Review of the Literature and Formulation of the Problem.- List of Symbols.- I. Gain of Electronic Transitions in Diatomic Molecules.- §1. General Formula for Gain of Electronic-Vibrational-Rotational Transitions.- §2. Distribution of Gain in Rotational Structure of Molecular Bands.- §3. Dependence of Gain on Gas Temperature.- §4. Calculation of Gain for 0 – 0 Band in Second Positive System of Nitrogen.- II. Experimental Method.- §1. Discharge Excitation System.- §2. Measurement of Parameters of Excitation Pulses.- §3. Spectral Measurement. Spectroscopic Apparatus.- §4. Determination of Time Characteristics of Spontaneous and Stimulated Radiation.- §5. Gas-Discharge Tubes. Vacuum System.- §6. Systems for Cooling Working Gases.- §7. Mirrors and Resonators. Superradiance and Laser Emission.- III. Laser Emission and Superradiance in Second Positive (Ultraviolet) System of Nitrogen Bands.- §1. Characteristics of Laser Emission.- §2. Influence of the Gas Temperature on Laser Emissions.- §3. Laser Emission Spectra.- §4. Discussion of Results.- IV. Laser Emission and Superradiance in First Positive (Infrared) System of Nitrogen Bands.- §1. Characteristics of Laser Emission from Cooled Active Gas.- §2. Laser Emission and Superradiance Spectra. Reversal of Intensity Alternation.- §3. Discussion of Results.- V. Laser Emission in Ångstrom (Visible) Band System of Carbon Monoxide.- §1. Characteristics of Laser Emission. Influence of Cooling.- §2. Laser Emission Spectra.- §3. Discussion of Results.- Conclusions.- Appendix., Summary Table of All Known Laser Emission Lines due to Electronic-Vibrational-Rotational Transitions in Molecules Arranged in Order of Increasing Wavelength.- Literature Cited.