Switchmode RF and Microwave Power Amplifiers (3rd Ed.)

Authors:

Language: English

149.82 €

In Print (Delivery period: 14 days).

Add to cartAdd to cart
Publication date:
840 p. · 19x23.3 cm · Paperback

Switchmode RF and Microwave Power Amplifiers, Third Edition is an essential reference book on developing RF and microwave switchmode power amplifiers. The book combines theoretical discussions with practical examples, allowing readers to design high-efficiency RF and microwave power amplifiers on different types of bipolar and field-effect transistors, design any type of high-efficiency switchmode power amplifiers operating in Class D or E at lower frequencies and in Class E or F and their subclasses at microwave frequencies with specified output power, also providing techniques on how to design multiband and broadband Doherty amplifiers using different bandwidth extension techniques and implementation technologies.

This book provides the necessary information to understand the theory and practical implementation of load-network design techniques based on lumped and transmission-line elements. It brings a unique focus on switchmode RF and microwave power amplifiers that are widely used in cellular/wireless, satellite and radar communication systems which offer major power consumption savings.

1. Power amplifier design principles2. Class-D power amplifiers3. Class-F power amplifiers4. Inverse Class F5. Class E with shunt capacitance and series filter6. Class E with finite dc-feed inductance7. Class E with quarterwave transmission line8. Class E with shunt capacitance and shunt filter9. Broadband Class E10. Alternative and mixed-mode high-efficiency power amplifiers11. High-efficiency Doherty power amplifiers12. Predistortion linearization techniques13. Computer-aided design of switchmode power amplifiers
RF/wireless and microwave engineers and designers; university researchers, graduate students
Dr. Andrei Grebennikov is a Senior Member of the IEEE and a Member of Editorial Board of the International Journal of RF and Microwave Computer-Aided Engineering. He received his Dipl. Ing. degree in radio electronics from the Moscow Institute of Physics and Technology and Ph.D. degree in radio engineering from the Moscow Technical University of Communications and Informatics in 1980 and 1991, respectively.

He has obtained a long-term academic and industrial experience working with the Moscow Technical University of Communications and Informatics, Russia, Institute of Microelectronics, Singapore, M/A-COM, Ireland, Infineon Technologies, Germany/Austria, and Bell Labs, Alcatel-Lucent, Ireland, as an engineer, researcher, lecturer, and educator.

He lectured as a Guest Professor in the University of Linz, Austria, and presented short courses and tutorials as an Invited Speaker at the International Microwave Symposium, European and Asia-Pacific Microwave Conferences, Institute of Microelectronics, Singapore, and Motorola Design Centre, Malaysia. He is an author or co-author of more than 80 technical papers, 5 books, and 15 European and US patents.
Marc J. Franco holds a Ph.D. degree in electrical engineering from Drexel University, Philadelphia. He is currently with RFMD, Technology Platforms, Component Advanced Development, Greensboro, North Carolina, USA, where he is involved with the design of advanced RF integrated circuits and integrated front-end modules. He was previously with Linearizer Technology, Inc. Hamilton, New Jersey, where he led the development of advanced RF products for commercial, military and space applications.

Dr. Franco is a regular reviewer for the Radio & Wireless Symposium, the European Microwave Conference and the MTT International Microwave Symposium. He is a member of the MTT-17 HF-VHF-UHF Technology Technical Coordination Committee and has co-chaired the IEEE Topical Conference on Power Amplifiers for Radio and Wireless

  • Provides a complete history of high-efficiency Class E and Class F techniques
  • Presents a new chapter on Class E with shunt capacitance and shunt filter to simplify the design of high-efficiency power amplifier with broader frequency bandwidths
  • Covers different Doherty architectures, including integrated and monolithic implementations, which are and will be, used in modern communication systems to save power consumption and to reduce size and costs
  • Includes extended coverage of multiband and broadband Doherty amplifiers with different frequency ranges and output powers using different bandwidth extension techniques
  • Balances theory with practical implementation, avoiding a cookbook approach and enabling engineers to develop better designs, including hybrid, integrated and monolithic implementations