The Enzymes of Biological Membranes, Softcover reprint of the original 1st ed. 1976
Volume 3 Membrane Transport (FIRST EDITION)

Author:

Language: English
Cover of the book The Enzymes of Biological Membranes

Subject for The Enzymes of Biological Membranes

Approximative price 52.74 €

In Print (Delivery period: 15 days).

Add to cartAdd to cart
Publication date:
459 p. · 17.8x25.4 cm · Paperback
Much of the information currently available on the transport systems of bacterial and animal cell membranes and their mode of coupling to metabolic supply of energy can be found in this volume. Consideration of the participating enzymes dictated the choice of topics: Several transport systems where little information is available on the enzymology of the process are not included, while separate chapters deal with y-glutamyl transpeptidase and intestinal disaccharidases which meet many of the requirements of transport enzymes. The volume also includes two chapters on photosynthetic membranes as a general introduction to the topic. Other aspects of biological transport and photosynthesis will be developed in detail in a forthcoming volume now in preparation. These chapters reveal the excitement and rapid advance of the field, the daily reports of new concepts, new techniques, and new experimental findings which instantly interact to generate further progress. Our aim was to provide a starting point for those who are just beginning, and an opportunity for others to stop, take stock, and start in a new direction. My warmest thanks to all who contributed to this volume.
AMembrane Transport in Microorganisms.- 1 Bacterial Membrane Transport Proteins.- I. Introduction.- II. Transport Proteins as Membrane-Bound Proteins.- III. Time and Place of Deposition of Membrane-Bound Transport Proteins in the Membrane.- IV. Lateral Mobility of Membrane Proteins in Escherichia coli.- V. Transmembrane Mobility of Transport Proteins.- VI. Substrate Binding Sites, Energization, and Conformational Change.- VII. The Coupling of Metabolic Energy to Active Transport.- VIII. Mechanics and Energization of Desmoprotein-Dependent Transport Systems.- IX. Conclusions.- References.- 2 The Bacterial Phosphoenolpyruvate Phosphotransferase System.- I. Introduction.- II. The Phosphotransferase System in Enterobacteriaceae.- A. The Formation of Phospho-HPr.- B. Enzyme II Complexes.- C. Genetics of the Phosphotransferase System.- D. The Physiological Functions of the Phosphotransferase System.- III. The Phosphotransferase System in Staphylococcus aureus.- IV. The Distribution of the Phosphotransferase System in Other Organisms.- References.- 3 Structure and Function of Membrane-Bound ATPase in Bacteria.- I. Introduction.- II. Molecular Properties.- A. Solubilization and Purification.- B. Molecular Weight and Subunits.- C. Amino Acid Composition.- D. Nucleotide Binding.- III. Kinetic Properties.- IV. Reassembly.- V. Inhibitory Action of Dicyclohexylcarbodiimide (DCCD).- VI. Physiological Functions.- A. Function in E. coli.- B. Function in S. faecalis.- References.- 4 Respiration and Energy Transduction in Escherichia coli.- I. Introduction.- II. The Electron Transport Chain of E. coli.- III. Solubilization and Fractionation of the Electron-Transport Chain.- IV. The Multiplicity of Cytochromes and Their Possible Involvement in Energy Transduction.- V. Oxidative Phosphorylation in E. coli.- VI. On the Direct Use of Energy from Respiration-Linked d-Lactate Oxidation for Active Transport.- VII. On the Role of Mg2+, Ca2+ Adenosine Triphosphatase in Energy Transduction.- References.- 5 Membrane-Bound Enzymes from Mycobacterium phlei; Malate Vitamin K Reductase.- I. Introduction.- II. Membrane Orientation.- III. Nature of Respiratory Chain.- IV. Malate Vitamin K Reductase.- A. Assay of Malate Vitamin K Reductase Activity.- B. Localization of Malate Vitamin K Reductase.- C. Separation of NAD+-Linked Dehydrogenase from Malate Vitamin K Reductase.- D. Purification of Malate Vitamin K Reductase.- E. Absorption Spectrum and Amino Acid Composition.- F. Stability of Malate Vitamin K Reductase.- G. Phospholipid Requirement.- H. Nature of Phospholipid Binding to Malate Vitamin K Reductase.- I. FAD Requirement of Malate Vitamin K Reductase.- J. Quinone Specificity of Malate Vitamin K Reductase.- K. Nonheme Iron: A Component of Malate Vitamin K Reductase.- L. Transmembrane Electron Transfer.- V. Membrane-Bound Latent ATPase Coupling Factor.- A. Localization of Latent ATPase.- B. Solubilization and Purification of Latent ATPase Activity.- C. Properties of Latent ATPase.- D. Role of Latent ATPase in Oxidative Phosphorylation and Active Transport.- E. Lipid Requirement for Latent ATPase Activity.- VI. Nature of Cytochromes from M. phlei.- VII. Conclusion.- References.- BPhotosynthetic Apparatus.- 6 The Organization of Photosynthetic Enzymes on the Chloroplast Membrane.- I. Introduction.- II. Organization of the Catalysts in a Functional Sequence.- III. Functional and Structural Subunits of the Chloroplast Membrane.- IV. Individual Catalysts and Their Interactions with the Membrane and Each Other.- A. NADP: Ferredoxin Oxidoreductase.- B. Ferredoxin.- C. X and P700.- D. Plastocyanin.- E. Cytochrome f.- F. Plastoquinone and Cytochrome b559.- G. Photosystem II and Oxygen Evolution.- H. Coupling Factor.- References.- 7 Chlorophyll-Proteins: Membrane-Bound Photoreceptor Complexes in Plants.- I. Introduction.- II. Demonstration of Existence of Multiple Chlorophyll-Proteins in Higher Plants.- III. The P700 Chlorophyll a-Protein.- A. Isolation.- B. Characteristics.- C. Function.- IV. Light-Harvesting Chlorophyll a/b-Protein.- A. Isolation.- B. Characteristics.- C. Function.- V. Content of Chlorophyll-Proteins in Photosynthetic Membranes.- VI. Biosynthesis of the Chlorophyll-Protein Complexes.- VII. Chloroplast Membrane Polypeptides.- A. Characteristics.- B. Function.- C. Biosynthesis.- VIII. Summary and Concluding Remarks.- References.- CSolute Transport in Mammalian Cells.- 8 Binding Proteins and Membrane Transport.- I. Introduction.- II. Nonmammalian Cells.- A. Periplasmic Proteins.- B. The Phosphotransferase System.- C. The Lactose Permease.- D. The Dicarboxylate-Transporting System.- III. Mammalian Cells.- A. The Ca ATPase of Erythrocytes.- B. The Ca-Binding Protein from Intestinal Mucosa.- C. The Sucrase-Isomaltase Complex.- IV. Mitochondria.- A. The Ca-Binding Proteins.- B. Anions.- V. Conclusions.- References.- 9 The Calcium Transport ATPase of Sarcoplasmic Reticulum.- I. Structure of the Sarcotubular System.- II. Function of the Sarcotubular System.- III. Isolation of the Sarcoplasmic Reticulum.- IV. Protein Composition.- V. Purification of the Membrane-Bound ATPase Enzyme.- A. Lipid Composition of ATPase.- B. Proteolipid.- C. Reconstitution of Calcium Transport.- VI. Ultrastructure of Isolated Sarcoplasmic Reticulum Vesicles and of ATPase.- A. Tryptic Fragmentation of ATPase.- B. Ionophoric Activity in the ATPase.- C. Control of Function through Phosphorylation.- D. Membrane-Binding Sites for Calcium.- VII. Biosynthesis of Sarcoplasmic Reticulum.- VIII. Reaction Mechanism.- A. The Phosphorylated Intermediate.- B. Formation of the Phosphorylated Intermediate (EP).- C. Decomposition of EP.- D. Substrate Specificity.- E. Inhibitors of Ca2+-Dependent ATPase Activity and Ca2+ Transport.- IX. Model for ATP-Driven Ca2+ Transport.- X. Conformational Probes.- A. Spin Labels.- B. Chromophoric Probes.- C. Hydrogen Exchange.- D. Circular Dichroism.- XI. Summary.- References.- 10 Plasma Membrane Calcium Transport and Membrane-Bound Enzymes.- I. Introduction.- A. Red Blood Cell Membrane Preparations.- B. Red Blood Cell Membrane-Bound ATPases.- II. Plasma Membrane Calcium Transport.- A. Calcium Transport in Red Blood Cells.- B. Calcium Transport in Other Systems.- C. Cellular Significance of Plasma Membrane Calcium Transport.- D. Active Ca2+ Transport and Na+-Ca2+ Exchange.- III. Calcium Transport and Disease.- IV. Summary.- References.- 11 The (Sodium plus Potassium)-Transport ATPase.- I. Physiological Background.- II. Characteristics of Ouabain-Sensitive Na+ and K+ Fluxes.- III. Ceneral Properties of the ATPase.- IV. Molecular Events.- V. The Ionophoric Process.- VI. Reversal of the (Na++K+)-ATPase Reaction.- VII. Arguments Against a Sequential Transport Model.- VIII. Regulation of Na+ and K+ Active Transport.- IX. Hormonal Control.- X. Regulation at the Cellular Level.- XI. Enzyme Preparations.- XII. Properties of Purified (Na++K +) ATPases.- XIII. Conclusion.- References.- 12 Potassium-Activated Phosphatase.- I. Introduction.- A. K-Activated Phosphatase and (Na++K+) ATPase.- II. Estimation of Phosphatase Activity.- III. Substrate Requirements.- IV. Effects of Cations.- A. Magnesium.- B. Potassium.- C. Sodium.- V. Effects of Inhibitors.- VI. Effects of ATP.- References.- 13 Membrane-Bound ?-Glutamyl Transpeptidase.- I. Introduction.- II. Background.- III. Histochemical Studies.- IV. Studies on Purified ?-Glutamyl Transpeptidase.- A. Methods of Purification.- B. Some Chemical and Physical Properties of the “Light” and “Heavy” Forms of the Enzyme.- C. Specificity.- D. Inhibition.- E. Ontogeny.- V. Physiological Function of ?-Glutamyl Transpeptidase.- References.- 14 Small Intestinal Disaccharidases: Their Properties and Role as Sugar Translocators across Natural and Artificial Membranes.- I. Small Intestinal Oligo- and Disaccharidases.- A. Maltases-Glucoamylases.- B. Sucrase-Isomaltase Complex.- C. Trehalase.- D. ?-Glycosidase Complex.- II. Some Molecular Properties of the Sucrase-Isomaltase Complex from Rabbit Small Intestine.- III. The Hydrolytic Mechanism of Sucrase and Isomaltase.- A. The Kinetic Mechanism.- B. The Configuration of C1+ of Glucose in the Products.- C. The Participation of a Carboxylate Group.- D. The Bond Split by Sucrase and Isomaltase.- E. The Effect of Para Substituents in the Aglycone Moiety: the Hammett-Hansch Equation.- F. The Secondary Deuterium Effect.- G. A Minimal Reaction Mechanism.- IV. The Role of Brush-Border-Bound Disaccharidases in Intestinal Sugar Transport in Intact Cells.- V. Reconstitution of the Sucrase-Dependent Sugar-Transport System into Artificial Membranes.- References.- 15 The ADP-ATP Carrier in Mitochondrial Membranes.- I. Introduction.- II. Fundamentals of Defining Mitochondrial ADP-ATP Transport.- A. Metabolic Localization of ADP-ATP Transport.- B. The Mitochondrial Adenine Nucleotide Pool.- C. The Carrier Concept.- III. Kinetics.- A. Specificity.- B. Temperature Dependence.- IV. Regulation of Carrier Activity.- A. Concentration Dependence of ADP-ATP Transport.- B. Energy Control of Reversed and Forward Rates.- C. Electrical Charge Movement and Exchange.- V. Inhibitors of ADP-ATP Transport.- VI. Definition of the Carrier Sites.- A. Binding of ADP and Interaction with ATR.- B. Binding of ADP and Interaction with Bongkrekate.- C. The Reorientation Mechanism.- D. Endogenous ADP, ATP under the Influence of BKA.- VII. Conformational Changes of the Membrane on Binding of ADP.- VIII. The Binding of [35S]ATR and [35S]CAT and the Interaction with Other Ligands.- IX. The Sensitivity of ADP-ATP Carrier to Maleimide.- X. The ADP-ATP Carrier in Submitochondrial (Sonic) Particles.- XI. Carrier Mechanisms.- A. Translocation Step.- B. Activation Step.- XII. Isolation of the Carrier Protein.- A. [35S]CAT as a Marker for Carrier Isolation.- B. NEM as a Marker of the Carrier Protein.- C. Conclusions.- References.- Author Index.