The Sol-Gel Handbook, 3 Volume Set
Synthesis, Characterization, and Applications

Coordinators: Levy David, Zayat Marcos

Language: English

533.75 €

In Print (Delivery period: 14 days).

Add to cartAdd to cart
Publication date:
1616 p. · 17.8x25.2 cm · Hardback
This comprehensive three-volume handbook brings together a review of the current state together with the latest developments in sol-gel technology to put forward new ideas.
The first volume, dedicated to synthesis and shaping, gives an in-depth overview of the wet-chemical processes that constitute the core of the sol-gel method and presents the various pathways for the successful synthesis of inorganic and hybrid organic-inorganic materials, bio- and bio-inspired materials, powders, particles and fibers as well as sol-gel derived thin films, coatings and surfaces.
The second volume deals with the mechanical, optical, electrical and magnetic properties of sol-gel derived materials and the methods for their characterization such as diffraction methods and nuclear magnetic resonance, infrared and Raman spectroscopies.
The third volume concentrates on the various applications in the fields of membrane science, catalysis, energy research, biomaterials science, biomedicine, photonics and electronics.

Preface XXI

List of Contributors XXIII

Volume One: Synthesis and Processing

Part One Sol–Gel Chemistry and Methods 1

1 Chemistry and Fundamentals of the Sol–Gel Process 3
Ulrich Schubert

1.1 Introduction 3

1.2 Hydrolysis and Condensation Reactions 4

1.2.1 Silica-Based Materials 4

1.2.1.1 Precursor(s) 9

1.2.1.2 Catalyst (pH) 9

1.2.1.3 Alkoxo Group/H2O Ratio (Rw) 9

1.2.1.4 Solvent 10

1.2.1.5 Electrolytes 10

1.2.2 Metal Oxide-Based Materials 11

1.3 Sol–Gel Transition (Gelation) 17

1.3.1 Hydrolytic Sol–Gel Processes 17

1.3.2 Nonhydrolytic Sol–Gel Processes 22

1.3.3 Inorganic–Organic Hybrid Materials 22

1.4 Aging and Drying 24

1.5 Postsynthesis Processing 26

1.6 Concluding Remarks 26

References 27

2 Nonhydrolytic Sol–Gel Methods 29
Rupali Deshmukh and Markus Niederberger

2.1 Introduction 29

2.2 Nonaqueous Sol–Gel Routes to Metal Oxide Nanoparticles 31

2.2.1 Surfactant-Assisted Synthesis 31

2.2.2 Solvent-Controlled Synthesis 33

2.2.2.1 Benzyl Alcohol Route 33

2.2.2.2 tert-Butyl Alcohol Route 37

2.2.2.3 Ether Route 37

2.2.2.4 Acetophenone Route 38

2.2.2.5 Carboxylic Acid Route 39

2.2.2.6 Benzylamine Route 39

2.2.3 Microwave-Assisted Synthesis 40

2.3 Nonaqueous Sol–Gel Synthesis beyond Metal Oxides 43

2.3.1 Composites 43

2.3.2 Organic–Inorganic Hybrid Materials 44

2.3.3 Metal Sulfides 46

2.3.4 Metals 47

2.4 Chemical Reaction and Crystallization Mechanisms 48

2.4.1 Introduction 48

2.4.2 Overview of the Main Chemical Reactions 49

2.4.3 Classical and Nonclassical Crystallization Mechanisms 51

2.4.4 Selected Examples 51

2.5 Assembly and Processing 56

2.5.1 Introduction 56

2.5.2 Nanoparticle Arrays and Superlattices 57

2.5.3 Oriented Attachment and Mesocrystals 59

2.5.4 Films 60

2.6 Summary and Outlook 63

References 63

3 Integrative Sol–Gel Chemistry 71
M. Depardieu, N. Kinadjian, D. Portehault, R. Backov, and Clément Sanchez

3.1 Introduction 71

3.2 Design of 0D Structures 72

3.2.1 Aerosol Processing 72

3.2.2 Capsules 75

3.2.2.1 Simple Emulsions Preparation 76

3.2.2.2 Mineralization of the Wax Dispersion 76

3.2.2.3 Temperature-Triggered Release 77

3.2.2.4 Introducing a Hydrophilic Compartment 79

3.2.2.5 Water@Wax@Water Emulsion Formulation 80

3.2.2.6 Water@Wax@Water Emulsion Mineralization 80

3.2.2.7 Temperature-Triggered Release 81

3.2.2.8 Wax@Water@Oil Emulsion Formulation 83

3.2.2.9 Wax@Water@Oil Emulsion Mineralization 84

3.2.2.10 Temperature-Triggered Release 85

3.3 Design of 1D Macroscopic Structures 88

3.3.1 Electrospinning 89

3.3.1.1 A First Case: TiO2 Fibers for Dye-Sensitized Solar Cells 89

3.3.1.2 Coupling Sol–Gel Reactions and Electrospinning 90

3.3.2 Extrusion 93

3.3.2.1 V2O5 Fibers as Alcohol Sensor 94

3.3.2.2 Composite Fibers Prepared with the Help of Polymer Dehydration/Reticulation 96

3.4 Design of Extended 2D Structures 99

3.5 Design of Extended 3D Structures 99

3.5.1 Foams 99

3.5.1.1 Silica Foams: Si-(HIPE) 101

3.5.1.2 Eu3+@Organo-Si-(HIPE): Photonic Properties 101

3.5.1.3 Pd@Organo-Si-(HIPE): Cycling Heck Catalysis Reactions 103

3.5.1.4 Enzyme@Organo-Si-(HIPE): High Efficiency Biocatalysts 104

3.5.1.5 Si-(HIPE) as Hard Template to Carbonaceous Foams and Applications 106

3.5.1.6 Carbon-(HIPE) as Li Ion Negative Electrodes 107

3.5.1.7 LiBH4@Carbon-(HIPE) for Hydrogen Storage and Release 107

3.5.2 Aerogels 112

3.5.3 Dense Nanostructured Monoliths 112

3.6 Conclusions 113

References 115

4 Synthetic Self-Assembly Strategies and Methods 121
Alexandra Zamboulis, Olivier Dautel, and Joël J.E. Moreau

4.1 Introduction 121

4.2 Templated Synthesis of Inorganic Materials 122

4.2.1 Self-Assembly of Mesoporous Silicas 123

4.2.2 Hydrothermal Rearrangement and Postsynthesis Treatment 125

4.2.3 Self-Assembly of Thin Films 126

4.2.4 Self-Assembly of Functionalized Mesoporous Silicas 127

4.3 Self-Assembled Organosilicas 128

4.3.1 Control of the Pore Structure: Templated Synthesis of Mesoporous Bridged Silsesquioxanes 129

4.3.2 Self-Organized Organosilicas 132

4.3.3 Self-Assembly Synthetic Strategies for Organosilicas with Optical Properties 139

4.3.3.1 Toward an H-Aggregation/Card Pack Stacking 141

4.3.3.2 From a J- to an H-Aggregation 149

4.3.3.3 Transcription of the J-Aggregation from the Precursor to the Material 153

4.4 Conclusions 154

References 154

5 Processing of Sol–Gel Films from a Top-Down Route 165
Plinio Innocenzi and Luca Malfatti

5.1 Introduction 165

5.2 Top-Down Processing by UV Photoirradiation 167

5.2.1 UV Curing of Oxides 167

5.2.2 UV Curing of Hybrid Sol–Gel Films 169

5.2.3 UV Photoirradiation of Mesoporous Films 170

5.2.4 Nanocomposite So–Gel Films by UV Photoirradiation 173

5.3 Laser Irradiation and Writing 174

5.3.1 Thermal-Induced Effects 174

5.3.2 Laser-Induced Microfabrication 175

5.3.3 Nanofabrication by Two- or Multiphoton Absorption 177

5.4 Electron Beam Lithography 178

5.5 Top-Down Processing by Hard X-Rays 181

5.6 Soft X-Ray Lithography 184

References 186

6 Sol–Gel Precursors 195
Vadim G. Kessler

6.1 Introduction 195

6.2 Simple Silicon Alkoxides 196

6.3 Functional and Mixed Ligand Silicon Alkoxides for More Facile Hydrolysis 197

6.4 Functional Silicon Alkoxides: Precursors of Hybrid Materials 198

6.5 Simple Metal Alkoxides 200

6.5.1 Commercially Available Simple Metal Alkoxide 202

6.5.2 Customary Synthesis of Metal Alkoxide Precursors 209

6.5.2.1 Interaction of Metals with Alcohols 209

6.5.2.2 Alcoholysis of Complexes Derived from Volatile Acids Weaker Than Alcohols 209

6.5.2.3 Basic Alcoholysis of Metal Halides: Metathesis Reaction 210

6.5.2.4 Alcoholysis of Metal Oxides 210

6.5.2.5 Electrochemical Oxidation of Metals in Alcohols 211

6.5.2.6 Alcohol Interchange Reaction 211

6.6 Functional and Mixed Ligand Metal Alkoxides for More Facile Hydrolysis and Stabilization of Resulting Colloids 212

6.7 Precursor and Solvent Choice for Nonhydrolytic Sol–Gel Processes 213

6.8 Synthesis of Complex Materials: Single-Source Precursor Approach 214

6.9 Sol–Gel Precursors for Special Applications: Biomedical and Luminescent 215

Abbreviations 216

References 216

Part Two Sol–Gel Materials 225

7 Nanoparticles and Composites 227
Guido Kickelbick

7.1 Introduction 227

7.2 Aqueous Sol–Gel Process 228

7.2.1 Silica Nanoparticles 228

7.2.1.1 Properties of Silica Nanoparticles 230

7.2.2 Metal Oxides 231

7.3 Nonaqueous Sol–Gel Process 232

7.3.1 Metal Oxides 232

7.4 Surface Functionalization of Nanoparticles 234

7.5 Nanocomposites 236

7.5.1 Dispersion of Silica Nanoparticles in Polymer Matrices 237

7.5.2 In Situ Production of Silica Particles in a Polymer Matrix 237

7.5.3 Melt Production of Silica Particles in a Polymer Matrix 238

7.5.4 Properties of Nanoparticle Polymer Nanocomposites 238

7.6 Conclusions 239

References 239

8 Oxide Powders and Ceramics 245
Maria Zaharescu and Luminita Predoana

8.1 Oxide Powders Obtained by Sol–Gel Methods 245

8.2 Ceramics from Sol–Gel Oxide Powders 248

8.3 Pure and Doped Single Oxide Ceramics 249

8.3.1 Nanocrystalline Yttria 249

8.3.2 Gd-Doped Ceria 249

8.4 Multicomponent Ceramics 250

8.4.1 Zirconium Titanate 250

8.4.2 Lead Titanate 251

8.4.3 Zr-Doped PbTiO3 251

8.4.4 Nb-Doped PZT 252

8.4.5 W-Doped PZT 252

8.4.6 Ca-Doped PbTiO3 253

8.4.7 Barium Titanate 255

8.4.8 (Er, Yb)-Doped BaTiO3 256

8.4.9 Barium Strontium Titanate 256

8.4.10 Co-Doped Barium Strontium Titanate 257

8.4.11 Mg-Doped Barium Strontium Titanate 257

8.4.12 Magnesium Titanate 257

8.4.13 B-Doped MgTiO3 258

8.4.14 Calcium Titanate 258

8.4.15 CaTiO3–(Sm, Nd)AlO3 Solid Solution 259

8.4.16 (Co, Cu)-Doped Calcium Titanate 259

8.4.17 (Na, K)-Doped Bismuth Titanate 260

8.4.18 Mg-Doped Barium Tantalate 261

8.4.19 Lead-Free Ba(Fe0.5Nb0.5)O3 261

8.4.20 B-Doped Mg4Nb2O9 261

8.4.21 Ce-Doped Lutetium Aluminum Garnet 262

8.4.22 Ce-Doped Barium Yttrium Garnet 263

8.4.23 Aluminum Titanate 263

8.4.24 Magnesium Aluminum Titanate 264

8.4.25 Lanthanum Cobaltite 265

8.5 Composite Ceramics 266

8.5.1 Al2O3–ZrO2 Nanocomposite 266

8.5.2 Alumina–Yttrium Aluminum Garnet 269

8.6 Conclusions 269

References 270

9 Thin Film Deposition Techniques 277
David Grosso, Cédric Boissière, and Marco Faustini

9.1 Introduction 277

9.2 General Aspects of Liquid Deposition Techniques 280

9.2.1 A Multistep Process between Chemistry and Engineering 280

9.2.2 Initial Solution (Sol–Gel Chemistry) 280

9.2.3 Deposition Step (Solution Spreading) 283

9.2.4 Evaporation Step (Progressive Concentration) 284

9.2.5 Optional Patterning Processes 288

9.2.6 Postdeposition Treatments (Stabilization, Consolidation, and Modification) 288

9.3 Spin Coating 289

9.3.1 Generalities on Spin Coating 289

9.3.2 Fundamentals of Spin Coating 290

9.3.3 Advantages and Drawbacks of Spin Coating 294

9.3.4 Some Critical Examples of Films Prepared by Spin Coating 295

9.4 Dip Coating 296

9.4.1 Generalities on Dip Coating 296

9.4.2 Fundamentals of Dip Coating 297

9.4.2.1 Model for the Capillarity Regime 299

9.4.2.2 Model for the Draining Regime 300

9.4.2.3 Combining Models to Describe Simultaneously Both Regimes 301

9.4.3 Advantages and Drawbacks of Dip Coating 302

9.4.4 Some Critical Examples of Films Prepared by Dip Coating 302

9.5 Alternative and Emerging Techniques 304

9.5.1 Roll-to-Roll Coating Techniques 304

9.5.2 Droplet-Assisted Deposition (Aerosol and Inkjet) 304

9.5.3 Electro-assisted Deposition 308

9.6 General Perspectives 310

References 310

10 Monolithic Sol–Gel Materials 317
Raz Gvishi

10.1 Introduction 317

10.2 Principles of Sol–Gel Monolith Fabrication 319

10.2.1 Hydrolysis and Condensation 319

10.2.2 Role of Drying in Monolith Fabrication 320

10.2.3 Chemical Composition Effects 321

10.2.3.1 Metal Alkoxide Precursor Types 321

10.2.3.2 pH Effect: Type of Catalyst Used 321

10.2.3.3 H2O: Si Molar Ratio (R) 322

10.2.3.4 Steric Effect of Precursor Ligand Groups 323

10.2.3.5 Functionality of Organically Modified Silanes 323

10.3 Routes for Fabrication of Monoliths 324

10.3.1 Xerogel Monoliths 325

10.3.1.1 Methods for Preparing Nonsilica Xerogel Monoliths 325

10.3.1.2 Methods for Preparing Silica Xerogel Monoliths 327

10.3.2 Organically Modified Silane Monoliths 329

10.3.2.1 ORMOSIL Inorganic–Organic Hybrid Monoliths in One Phase 330

10.3.2.2 Hybrid Monoliths by Fast Sol–Gel (FSG) Process 331

10.3.3 Multiphasic Composite Hybrid Monoliths 333

10.3.4 Aerogel Monoliths 338

10.4 Summary 339

References 340

11 Hollow Inorganic Spheres 345
Atsushi Shimojima

11.1 Introduction 345

11.2 General Strategies 345

11.2.1 Templating Methods 345

11.2.2 Template-Free Methods 347

11.3 Typical Synthesis Procedures 347

11.3.1 Hollow Silica Particles 347

11.3.2 Hollow Mesoporous Silica Particles 350

11.3.3 Hollow Organosilica Nanoparticles 354

11.3.4 Hollow Crystalline Silicate Particles 355

11.3.5 Hollow Titania (TiO2) Particles 357

11.3.6 Hollow Particles of Other Metal Oxides 359

11.4 Applications 360

11.4.1 Antireflective Coatings 360

11.4.2 Catalysis 361

11.4.3 Lithium Ion Battery 362

11.4.4 Biomedical Applications 363

11.5 Summary 365

References 365

12 Sol–Gel Coatings by Electrochemical Deposition 373
Liang Liu and Daniel Mandler

12.1 Introduction 373

12.2 Mechanism of the Sol–Gel Electrochemical Deposition 374

12.3 Manipulation of the Sol–Gel Electrochemical Deposition 379

12.3.1 Effect of Deposition Parameters 379

12.3.2 Electrochemical Deposition of Nanostructured Silica Thin Films 383

12.3.3 Selective Electrochemical Deposition on Patterns 385

12.3.4 Local Electrochemical Deposition of Sol–Gel Films by Scanning Electrochemical Microscopy 386

12.4 Electrochemical Codeposition of Sol–Gel-Based Hybrid and Composite Films 388

12.4.1 Electrodeposition of Sol–Gel-Based Hybrid Films 389

12.4.2 Electrodeposition of Sol–Gel-Based Composite Films 390

12.5 Applications of Electrochemically Deposited Sol–Gel Films 394

12.5.1 Corrosion Protection and Adhesion Promotion 394

12.5.2 Electrochemical Sensors 397

12.5.3 Biocomposite Films 400

12.5.4 Other Applications 405

12.6 Summary 408

Abbreviations for Silanes 409

Acknowledgments 410

References 410

13 Nanofibers and Nanotubes 415
Il-Doo Kim and Seon-Jin Choi

13.1 Introduction 415

13.2 Nanofibers 415

13.2.1 Electrospinning Process 416

13.2.2 Polymer Nanofibers 417

13.2.3 Metal Nanofibers 419

13.2.4 Metal Oxide Nanofibers 421

13.2.5 Multicomposite Nanofibers 424

13.2.6 Graphene-Functionalized Nanofibers 426

13.3 Nanotubes 427

13.3.1 Direct Synthetic Methods of Nanotubes 427

13.3.1.1 Hydrothermal Synthetic Routes 427

13.3.1.2 Electrochemical Synthetic Routes 428

13.3.1.3 Electrospinning Routes 428

13.3.2 Indirect Synthetic Methods of Nanotubes 431

13.3.2.1 AAO Templating Routes 431

13.3.2.2 Inorganic Layer Templating Routes 432

13.3.2.3 Polymer Templating Routes 434

13.3.2.4 Electrospun Nanofiber Templating Route 436

13.4 Summary and Future Perspectives 439

References 439

14 Nanoarchitectures by Sol–Gel from Silica and Silicate Building Blocks 443
Pîlar Aranda, Carolina Belver, and Eduardo Ruiz-Hitzky

14.1 Introduction 443

14.2 Porous Clay Nanoarchitectures Using Sol–Gel Approaches 444

14.3 Porous Nanoarchitectures from Delaminated Clays 450

14.4 Fibrous Silicates as Building Blocks in Sol–Gel Nanoarchitectures Derived from Clays 457

14.5 Conclusion 464

Acknowledgments 465

References 465

15 Sol–Gel for Metal Organic Frameworks (MOFs) 471
Kang Liang, Raffaele Ricco, Julien Reboul, Shuhei Furukawa, and Paolo Falcaro

15.1 Introduction 471

15.2 Design and Synthetic Strategies of MOF–Sol–Gel-Based Structures 472

15.2.1 MOFs Hosting Sol–Gel-Based Structures 472

15.2.2 Surface Chemical Functionalization of Sol–Gel Materials and Ceramics for MOF Technology 475

15.2.2.1 Nano/Microparticles 475

15.2.2.2 Thin Films 476

15.2.2.3 Membranes and Monoliths 477

15.2.3 Engineered Ceramics and Hybrid Materials for Controlled MOF Nucleation and Growth 478

15.2.3.1 Nano/Microparticles 478

15.2.3.2 Thin Films and Membranes 479

15.2.4 Conversion from Ceramics for the Fabrication of MOFs 480

15.3 Conclusion and Remarks 482

Acknowledgments 483

References 483

16 Silica Ionogels and Ionosilicas 487
Peter Hesemann, Lydie Viau, and André Vioux

16.1 Introduction 487

16.2 Ionogels 488

16.2.1 Brief Presentation of ILs 488

16.2.2 Sol–Gel in Ionic Liquids 489

16.2.2.1 Formic Acid Solvolysis Sol–Gel Way 490

16.2.2.2 Hydrolysis Sol–Gel Way 491

16.2.2.3 Mesoporous Silicas from Ionogels 492

16.2.2.4 Particulate Ionogels 492

16.2.3 Applications of Ionogels 493

16.2.3.1 Conducting Properties of Confined ILs 493

16.2.3.2 Hybrid Host Matrices for Ionogel Electrolytes 494

16.2.3.3 Ionogel Electrolytes for Lithium Batteries 495

16.2.3.4 Proton-Conducting Ionogel Membranes 495

16.2.3.5 Ionogel Electrolytes for Solar Cells 495

16.2.3.6 Ionogels Incorporating Task-Specific Solutes 495

16.2.3.7 Ionogels for Drug Release Systems 497

16.3 Ionosilicas 497

16.3.1 Definitions 497

16.3.1.1 Synthesis of Ionosilicas 498

16.3.2 Synthesis of Surface-Functionalized Ionosilicas 498

16.3.2.1 Postsynthesis Grafting Reactions 500

16.3.2.2 Cocondensation Reactions 500

16.3.3 Hybrid Ionosilicas 504

16.3.4 Ionic Nanoparticles and Ionic Nanoparticle Networks 505

16.3.5 Applications of Ionosilicas 506

16.3.5.1 Catalysis 506

16.3.5.2 Anion Exchange Reactions 507

16.3.5.3 Molecular Recognition 507

16.4 Conclusion 508

References 508

17 Aerogels 519
Shanyu Zhao, Marina S. Manic, Francisco Ruiz-Gonzalez, and Matthias M. Koebel

17.1 Introduction and Brief History 519

17.2 Synthesis and Processing 521

17.2.1 Gel Preparation 521

17.2.1.1 Silica Gels 521

17.2.1.2 Nonsilica Inorganic Oxide Gels 527

17.2.1.3 Organic and Biopolymer Gels 529

17.2.1.4 Exotic Gels 534

17.2.2 Gel Aging and Solvent Exchange 535

17.2.2.1 Aging Process 535

17.2.2.2 Effect of Solvent Exchange 536

17.2.3 Gel Modification and Chemical Functionalization 537

17.2.4 Gel Drying 538

17.2.4.1 Freeze-Drying 539

17.2.4.2 Ambient Pressure Drying 540

17.2.4.3 Supercritical Drying 543

17.2.4.4 High-Temperature Supercritical Drying 544

17.2.4.5 Low-Temperature Supercritical Drying 545

17.3 Characterization Methods 546

17.3.1 Structural Characterization 547

17.3.2 Chemical Characterization 548

17.3.3 Thermal Characterization 549

17.3.4 Mechanical Characterization 550

17.3.5 Optical Characterization 552

17.4 Selected Examples and Applications 553

17.4.1 Aerogels for Superinsulation 554

17.4.1.1 Silica Aerogels 555

17.4.1.2 Organic Aerogels 555

17.4.2 Aerogels for Catalysis: Chemistry Applications 556

17.4.2.1 Silica-Based Aerogel 556

17.4.2.2 Alumina-Based Aerogel 556

17.4.2.3 Titania-Based Aerogel 557

17.4.2.4 Zirconia-Based Aerogel 557

17.4.2.5 Carbon Aerogels 557

17.4.2.6 Other Mixed Oxides Composite Aerogels 558

17.4.3 Aerogels for Supercapacitor and Battery Research 558

17.4.4 Aerogels in Space Exploration 558

17.4.5 Aerogels for Biomedical Applications 559

17.5 Trends, Conclusion, and Outlook 559

17.5.1 Small Volume–High Specialization 559

17.5.2 Large Volume–High Performance 560

17.5.3 Outlook 561

References 562

18 Ordered Mesoporous Sol–Gel Materials: From Molecular Sieves to Crystal-Like Periodic Mesoporous Organosilicas 575
Sílvia C. Nunes, Paulo Almeida, and Verónica de Zea Bermudez

18.1 Introduction 575

18.2 Synthesis Mechanisms of Periodic Mesoporous Silica Materials 577

18.2.1 Liquid Crystal Templating 578

18.2.2 Cooperative Self-Assembly 578

18.2.3 Evaporation-Induced Self-Assembly Mechanism 579

18.2.4 Soft Templating 580

18.3 Functionalization of Periodic Mesoporous Silica Materials 582

18.3.1 Postsynthetic Grafting 583

18.3.2 Direct Synthesis 583

18.4 Periodic Mesoporous Organosilicas 584

18.4.1 Synthesis Mechanisms 584

18.4.2 Multifunctionalization 586

18.4.3 Periodic Mesoporous Organosilicas with Amorphous Wall Structure 587

18.4.4 Periodic Mesoporous Organosilicas with Crystal-Like Wall Structure 587

18.4.5 Functionalization of Crystal-Like Periodic Mesoporous Organosilicas and Figures of Merit 591

18.5 Future Trends 595

Acknowledgments 596

References 596

19 Biomimetic Sol–Gel Materials 605
Carole Aimé, Thibaud Coradin, and Francisco M. Fernandes

19.1 Introduction 605

19.2 Natural Sol–Gel Materials 606

19.2.1 Biogenic Oxides 606

19.2.2 Biochemical Conditions of Silica Formation 609

19.2.3 Chemical Features of Biogenic Silica 610

19.2.3.1 Silica Deposit in Higher Plants 610

19.2.3.2 Diatoms Frustule 611

19.2.3.3 Sponges Spicule 612

19.2.4 Properties and Applications 614

19.2.5 Overview 617

19.3 Biomimetic Sol–Gel Chemistry 618

19.3.1 Chemical Background from Biosilicification Processes 618

19.3.1.1 Silaffins 618

19.3.1.2 Silicateins 620

19.3.2 Silicatein-Derived Biomimetic Sequences: From Proteins to Amino Acids 624

19.3.2.1 Enzymes and Peptides 624

19.3.2.2 Rational Design 625

19.3.3 Silaffins-Derived Biomimetic Sequences Based on Polyamines 628

19.3.3.1 Long-Chain Polyamines: Silica Formation and Morphogenesis Control 628

19.3.3.2 Short-Chain Amines 629

19.3.3.3 R5 Peptide 630

19.3.4 Overview 630

19.4 Biohybrid Materials from Bioinspired Mineralization Strategies 631

19.4.1 Mineralization of Biomacromolecules 632

19.4.1.1 Proteins 632

19.4.1.2 Polysaccharides 635

19.4.1.3 Complex Coacervates 636

19.4.2 Mineralization of Microorganisms 637

19.4.3 Materials and Devices Based on Biomimetic and Bioinspired Mineralization 638

19.4.4 Overview 641

19.5 Conclusions 641

References 642

Volume Two: Characterization and Properties of Sol-Gel Materials

Part Three Characterization Techniques for Sol–Gel Materials 651

20 Solid-State NMR Characterization of Sol–Gel Materials: Recent Advances 653
Florence Babonneau, Christian Bonhomme

21 Time-Resolved Small-Angle X-Ray Scattering 673
Johan E. ten Elshof, Rogier Besselink, Tomasz M. Stawski, Hessel L. Castricum

22 Characterization of Sol–Gel Materials by Optical Spectroscopy Methods 713
Rui M. Almeida, Jian Xu

23 Properties and Applications of Sol–Gel Materials: Functionalized Porous Amorphous Solids (Monoliths) 745
Kazuki Nakanishi

24 Sol–Gel Deposition of Ultrathin High-κ Dielectric Films 767
An Hardy, Marlies K. Van Bael

Part Four Properties 787

25 Functional (Meso)Porous Nanostructures 789
Andrea Feinle, Nicola Hüsing

26 Sol–Gel Magnetic Materials 813
Lucía Gutiérrez, Sabino Veintemillas-Verdaguer, Carlos J. Serna, María del Puerto Morales

27 Sol–Gel Electroceramic Thin Films 841
María Lourdes Calzada

28 Organic–Inorganic Hybrids for Lighting 883
Vânia Teixeira Freitas, Rute Amorim S. Ferreira, Luis D. Carlos

29 Sol–Gel TiO2 Materials and Coatings for Photocatalytic and Multifunctional Applications 911
Yolanda Castro, Alicia Durán

30 Optical Properties of Luminescent Materials 929
Sidney J.L. Ribeiro, Molíria V. dos Santos, Robson R. Silva, Édison Pecoraro, Rogéria R. Gonçalves, José Maurício A. Caiut

31 Better Catalysis with Organically Modified Sol–Gel Materials 963
David Avnir, Jochanan Blum, Zackaria Nairoukh

32 Hierarchically Structured Porous Materials 987
Ming-Hui Sun, Li-Hua Chen, Bao-Lian Su

33 Structures and Properties of Ordered Nanostructured Oxides and Composite Materials 1031
María Luz Martínez Ricci, Sara A. Bilmes

Volume Three: Application of Sol-Gel Materials

Part Five Applications 1055

34 Sol–Gel for Environmentally Green Products 1057
Rosaria Ciriminna, Mario Pagliaro, Giovanni Palmisano

35 Sol–Gel Materials for Batteries and Fuel Cells 1071
Jadra Mosa, Mario Aparicio

36 Sol–Gel Materials for Energy Storage 1119
Leland Smith, Ryan Maloney, Bruce Dunn

37 Sol–Gel Materials for Pigments and Ceramics 1145
Guillermo Monrós

38 Sol–Gel for Gas Sensing Applications 1173
Enrico Della Gaspera, Massimo Guglielmi, Alessandro Martucci

39 Reinforced Sol–Gel Silica Coatings 1207
Antonio Julio López, Joaquín Rams

40 Sol–Gel Optical and Electro-Optical Materials 1239
Marcos Zayat, David Almendro, Virginia Vadillo, David Levy

41 Luminescent Solar Concentrators and the Ways to Increase Their Efficiencies 1281
Renata Reisfeld

42 Mesoporous Silica Nanoparticles for Drug Delivery and Controlled Release Applications 1309
Montserrat Colilla, Alejandro Baeza, María Vallet-Regí

43 Sol–Gel Materials for Biomedical Applications 1345
Julian R. Jones

44 Self-Healing Coatings for Corrosion Protection of Metals 1371
George Kordas, Eleni K. Efthimiadou

45 Aerogel Insulation for Building Applications 1385
Bjørn Petter Jelle, Ruben Baetens, Arild Gustavsen

46 Sol–Gel Nanocomposites for Electrochemical Sensor Applications 1413
Pengfei Niu, Martí Gich, César Fernández-Sánchez, Anna Roig

Index 1435

David Levy is a Research Professor and head of the Sol-Gel Group at the Materials Science Institute of Madrid (ICMM) of the Consejo Superior de Investigaciones Cientí cas. His research interests are optical materials (bulk materials; thin- lm coatings as AR optical coatings, protection transparent coatings and functional coatings; oxide nanoparticles) and liquid crystal materials, by Sol-Gel processing and their applications. During his time at The Hebrew University of Jerusalem David Levy pioneered the sol-gel process for the preparation of organically doped silica-gel glasses. He has more than 130 publications and a number of patents to his name, and has received numerous prizes in recognition of his groundbreaking work on sol-gel materials, including the ?First Ulrich Prize? and the nomination to King Juan Carlos-I research award.

Marcos Zayat is currently vice-director of the Materials Science Institute of Madrid (ICMM). His scienti c interests are centered on the design of new optical coatings and the characterization of their physicochemical properties. After having obtained his PhD in Materials Science from The Hebrew University of Jerusalem in 1997, Marcos Zayat joined the ICMM where he continues developing sol-gel materials for optical and electrooptical applications. He has published more than fty original articles in prestigious scienti c journals.