Dynamical Decoupling in Distance Measurements by Double Electron-Electron Resonance, 1st ed. 2016
BestMasters Series

Author:

Language: English
Cover of the book Dynamical Decoupling in Distance Measurements by Double Electron-Electron Resonance

Subject for Dynamical Decoupling in Distance Measurements by Double...

52.74 €

In Print (Delivery period: 15 days).

Add to cartAdd to cart
Publication date:
Support: Print on demand
Janne Marie Soetbeer determines the optimal dynamical decoupling (DD) scheme for efficient reduction of electron spin coherence loss in model systems for spin labelled biomolecules depending on their particular relaxation behavior. Extending the nth order DD scheme to double electron-electron resonance (DEER) experiments require the addition of multiple pump pulses for ? 1. Incomplete excitation of pump spin packets introduce signal artefacts which are minimized by pump pulse optimization including linear-chirp and asymmetric hyperbolic secant pulses. Prolonging the dipolar evolution time with decreased signal artefact allows to extent the measurable interspin distances in biomolecules which were otherwise not accessible due to spin echo relaxation. 

The Spin Hamiltonian.- Pulsed EPR Experiments.- Relaxation Processes.- Dynamical Decoupling.- Model Systems.

Janne Marie Soetbeer completed her Master’s Thesis at the Swiss Federal Institute of Technology in Zurich, Switzerland. After a research stay with Prof. Dr. Robert Griffin at the Massachusetts Institute of Technology in Cambridge, USA, she will be returning to Zurich to start her PhD in Prof. Dr. Gunnar Jeschke’s group.

Study in Natural Science

Includes supplementary material: sn.pub/extras