General, Organic, and Biological Chemistry (4th Ed.)

Authors:

Language: English
Cover of the book General, Organic, and Biological Chemistry

Subject for General, Organic, and Biological Chemistry

227.56 €

In Print (Delivery period: 14 days).

Add to cartAdd to cart
Publication date:
560 p. · Paperback

For courses in General, Organic, and Biological Chemistry (1 - Semester)


An integrated and applied approach to General, Organic, and Biological Chemistry  

General, Organic, and Biological Chemistry strengthens the evidenced strategy of integrating general, organic, and biological chemistry for a focused introduction to the fundamental connections between chemistry and life. The streamlined approach establishes a clear path through the content over a single semester. The text integrates essential topics more effectively than any text on the market, covering core concepts in each discipline in just 12 comprehensive chapters. 


With the 4th Edition, authors Laura Frost and Todd Deal apply their knowledge and experience in the science of learning to incorporate research and best practices based on how students learn. A stronger applied focus provides practical connections and applications, showing both allied-health and non-science majors how to use their understanding of chemistry in future health professions and in their everyday lives. Enhanced digital tools in Mastering Chemistry and embedded in the Pearson eText guide students through all stages of the course, providing support when and where students need it.


Also available as a Pearson eText or packaged with Mastering Chemistry

Pearson eText is a simple-to-use, mobile-optimized, personalized reading experience that can be adopted on its own as the main course material. It lets students highlight, take notes, and review key vocabulary all in one place, even when offline. Seamlessly integrated videos and other rich media engage students and give them access to the help they need, when they need it. Educators can easily customize the table of contents and share their own notes with students so they see the connection between their eText and what they learn in class ? motivating them to keep reading, and keep learning. 


Mastering? combines trusted author content with digital tools developed to engage students and emulate the office-hour experience, Mastering personalizes learning and improves results for each student. The fully integrated and complete media package allows instructors to engage students before they come to class, hold them accountable for learning during class, and then confirm that learning after class.


Note: You are purchasing a standalone product; Mastering Chemistry does not come packaged with this content. Students, if interested in purchasing this title with Mastering Chemistry, ask your instructor for the correct package ISBN and Course ID. Instructors, contact your Pearson representative for more information. 


If you would like to purchase both the physical text and Mastering Chemistry, search for:

0134990803 / 9780134990804 General, Organic, and Biological Chemistry Plus Mastering Chemistry with Pearson eText -- Access Card Package

Package consists of:

  • 0134988698 / 9780134988696 General, Organic, and Biological Chemistry
  • 0134990080 / 9780134990088 Mastering Chemistry with Pearson eText -- ValuePack Access Card -- for General, Organic, and Biological Chemistry

1. Chemistry Basics - Matter and Measurement
1.1 Classifying Matter: Pure Substance or Mixture
1.2 Elements, Compounds, and Periodic Table
1.3 How matter Changes
1.4 Math Counts
1.5 Matter: The "Stuff" of Chemistry
1.6 Measuring Matter

2. Atoms and Radioactivity
2.1 Atoms and Their Components
2.2 Atomic Number and Mass Number
2.3 Isotopes and Atomic Mass
2.4 Radioactivity and Radioisotopes
2.5 Nuclear Equations and Radioactive Decay
2.6 Radiation Units and Half-Lives
2.7 Medical Applications for Radioisotopes

3. Compounds - How Elements Combine
3.1 Electron Arrangements and the Octet Rule
3.2 In Search of an Octet, Part 1: Ion Formation
3.3 Ionic Compounds- Electron Give and Take
3.4 In Search of an Octet, Part 2: Covalent Bond Formation
3.5 The Mole: Counting Atoms and Compounds
3.6 Getting Covalent Compounds into Shape
3.7 Electronegativity and Molecular Polarity

4. Introduction to Organic Compounds
4.1 Representing the Structures of Organic Compounds
4.2 Alkanes: The Simplest Organic Compounds
4.3 Families of Organic Compounds- Functional Groups
4.4 Nomenclature of Simple Alkanes
4.5 Isomerism in Organic Compounds

5. Chemical Reactions
5.1 Thermodynamics
5.2 Chemical Reactions: Kinetics
5.3 Overview of Chemical Reactions
5.4 Oxidation and Reduction
5.5 Organic Reactions: Condensation and Hydrolysis
5.6 Organic Addition Reactions to Alkenes

6. Carbohydrates - Life's Sweet Molecules
6.1 Classes of Carbohydrates
6.2 Function Groups in Monosaccharides
6.3 Stereochemistry in Monosaccharides
6.4 Reactions of Monosaccharides
6.5 Disaccharides
6.6 Polysaccharides
6.7 Carbohydrates and Blood

7. States of Matter and Their Attractive Forces: Gas Laws, Solubility, and Applications to the Cell Membrane
7.1 Gases and Gas Laws
7.2 Liquids and Solids: Predicting Properties Through Attractive Forces
7.3 Attractive Forces and Solubility
7.4 Dietary Lipids
7.5 Attractive Forces and the Cell Membrane

8. Solution Chemistry - Sugar and Water Do Mix
8.1 Solutions Are Mixtures
8.2 Formation of Solutions
8.3 Chemical Equations for Solution Formation
8.4 Concentration
8.5 Dilution
8.6 Osmosis and Diffusion
8.7 Transport Across

9. Acids, Bases, and Buffers in the Body
9.1 Acids and Bases- Definitions
9.2 Strong Acids and Bases
9.3 Chemical Equilibrium
9.4 Weak Acids and Bases
9.5 pH and the pH Scale
9.6 pKa
9.7 The Relationship Between pH, pKa, Drug Solubility, and Diffusion
9.8 Buffers and Blood- The Bicarbonate Buffer System

10. Proteins - Workers of the Cell
10.1 Amino Acids- The Building Blocks
10.2 Protein Formation
10.3 The Three-Dimensional Structure of Proteins
10.4 Denaturation of Proteins
10.5 Protein Functions
10.6 Enzymes - Life's Catalysts
10.7 Factors That Affect Enzyme Activity

11. Nucleic Acids - Big Molecules with a Big Role
11.1 Components of Nucleic Acids
11.2 Nucleic Acid Formation
11.3 DNA
11.4 RNA and Protein Synthesis
11.5 Putting It Together: The Genetic Code and Protein Synthesis
11.6 Genetic Mutations
11.7 Viruses
11.8 Recombinant DNA Technology

12. Food as Fuel - An Overview of Metabolism
12.1 How Metabolism Works
12.2 Metabolically Relevant Nucleotides
12.3 Digestion - From Food Molecules to Hydrolysis Products
12.4 Glycolysis - From Hydrolysis Production to Common Metabolites
12.5 The Citric Acid Cycle - Central Processing
12.6 Electron Transport and Oxidative Phosphorylation
12.7 ATP Production
12.8 Other Fuel Choices

About our authors

LAURA FROST is a Professor of Chemistry at Florida Gulf Coast University and Director of the Whitaker Center for Science, Technology, Engineering, and Mathematics (STEM) Education. She received a bachelor's degree in chemistry from Kutztown University and her Ph.D. in chemistry with a biophysical focus from the University of Pennsylvania. She has been teaching chemistry in higher education for over 20 years and continues to teach chemistry to students in the health professions.

Professor Frost is actively engaged in the teaching and learning in all STEM subjects, particularly chemistry, and uses a guided inquiry approach in her classes. She is very involved in the scholarship of teaching and learning and has demonstrated that the use of inquiry-based activities increases student learning in her one-semester chemistry course for health professionals.

Dr. Frost is a member of the American Chemical Society and its Chemical Education division. A member of the University System of Georgia faculty Hall of Fame, Dr. Frost has been honored on more than one occasion for her teaching excellence. Her writing has also been recognized, and in 2014, she was elected to the governing council of the Textbook and Academic Authors Association.

Dr. Frost is engaged in STEM education reform through evidence-based teaching and learning at all levels (K—16), as well as through community outreach. She was principal investigator of a successful NSF grant that provides professional development for faculty in evidence-based practices in STEM. She has spoken and attended numerous conferences and workshops on this topic.

TODD DEAL received his B.S. degree in chemistry in 1986 from Georgia Southern College (now University) in Statesboro, Georgia, and his Ph.D. in chemistry in 1990 from The Ohio State University. students in the health professions.

An award-winning educator, Dr. Deal has received nu

Hallmark features of this title

  • Guided Inquiry Activities by Laura Frost guide students through an exploration of given information to develop chemical concepts and then apply developed concepts to further examples.
  • Health-Related Problems are tied to real-life applications from allied health fields to promote critical-thinking skills and to connect the chemistry learned with students' future professions.
  • Macro-to-Micro Illustrations show how reactions occur on the molecular level, giving students a visual understanding of chemical processes.
  • Challenge Problems at the end of the chapter offer students an opportunity to test their skills with more difficult problems.
  • Sample Problems are annotated stepped-out problems that allow students to understand the strategy used to arrive at the solution.