Halogen-Free Flame-Retardant Polymers, 1st ed. 2020
Next-generation Fillers for Polymer Nanocomposite Applications

Springer Series in Materials Science Series, Vol. 294

Authors:

Language: English

Approximative price 105.49 €

In Print (Delivery period: 15 days).

Add to cartAdd to cart
Halogen-Free Flame-Retardant Polymers
Publication date:
Support: Print on demand

Approximative price 105.49 €

In Print (Delivery period: 15 days).

Add to cartAdd to cart
Halogen-Free Flame-Retardant Polymers
Publication date:
113 p. · 15.5x23.5 cm · Hardback

This book presents an overview of recent academic and industrial research efforts concerning halogen-free flame-retardant (FR) polymers and their nanocomposites. It summarizes the synthesis methods for various types of halogen-free FR polymers and their nanocomposites, and critically reviews their flame-retardant behavior, toxic-gas evolution during combustion, and inhibition methods. 

In turn, the book discusses the importance of metal oxide nanoparticles, nanoclay, and graphene in flame inhibition and addresses the FR properties of various FR compounds containing polymers, their FR mechanisms, and fire toxicant releasing and inhibition methods in detail. It systematically covers the synergetic effects between different FR compounds, and explains the significance of thermal stability and melt dripping for polymers? FR properties.

The fundamental concepts described here are essential to understanding the FR behaviors of various polymers and their nanocomposites, and to developing efficient, environmentally friendly FR polymers and nanocomposites for a wide range of applications. This book is ideally suited for researchers in the fields of polymer science and engineering, and for graduate students in chemistry and materials science.

Introduction.- Polymer combustion and flame retardancy.- Fire retardant polymers.- Flame-retardancy testing.- Importance of polyols in flame-retardant PUs.- Types of halogen-free fire-retardants (FRs).- UV-curable FRs.- Relationship between the melting dripping characteristics of polymer films.- Importance of char formation and morphology in FR activity.- Polymer nanocomposites for FR applications.- Conclusions and future scope.- References.

Professor Suprakas Sinha Ray received his PhD in physical chemistry from the University of Calcutta in 2001 and is currently a chief researcher on polymer nanocomposites at the Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa, and director of the DST-CSIR National Centre for Nanostructured Materials. Prof. Ray’s current research focuses on polymer-based advanced nanostructured materials and their applications. He is one of the most active and highly cited authors in the field of polymer nanocomposite materials and was recently rated by Thomson Reuters as one of the Top 1% most impactful and influential scientists and Top 50 high-impact chemists (out of 2 million chemists worldwide). 

Prof. Ray has co-authored 3 edited books and authored 4 books and 30 book chapters on various aspects of polymer-based nano-structured materials & their applications; he has also co-authored or authored 350 articles in high-impact international journals and 30 articles in national and international conference proceedings. He holds 6 patents, and he and his research team have commercially developed 19 different products. His honors and awards include South Africa’s most prestigious 2016 South Africa National Science and Technology Award (NSTF), the 2014 CSIR-wide Leadership Award, the 2014 CSIR Human Capital Development Award, the 2013 Morand Lambla Award (top award in the field of polymer processing worldwide), and an award from the International Polymer Processing Society, USA. He also serves as an Extraordinary Professor at the University of Pretoria and as a Distinguished Visiting Professor at the University of Johannesburg.

Dr. Malkappa Kuruma is a senior researcher at the DST-CSIR National Centre for Nanostructured Materials, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa. He received his PhD in chemistry from the University of Hy

Provides a comprehensive review of recent research efforts concerning halogen-free flame-retardant polymers and their nanocomposites

Addresses the properties and mechanisms of various polymer-containing fire retardant compounds

Discusses different methods for fire toxicant release and inhibition

Aids researchers in developing efficient, environmentally friendly fire retardant polymers and nanocomposites