Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex
FRANCE

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02


Url canonique : www.lavoisier.fr/livre/electricite-electronique/frequency-shaped-and-observer-based-discrete-time-sliding-mode-control/mehta/descriptif_3177280
Url courte ou permalien : www.lavoisier.fr/livre/notice.asp?ouvrage=3177280

Frequency-Shaped and Observer-Based Discrete-time Sliding Mode Control, 2015 SpringerBriefs in Applied Sciences and Technology Series

Langue : Anglais

Auteurs :

Couverture de l’ouvrage Frequency-Shaped and Observer-Based Discrete-time Sliding Mode Control
It is well established that the sliding mode control strategy provides an effective and robust method of controlling the deterministic system due to its well-known invariance property to a class of bounded disturbance and parameter variations. Advances in microcomputer technologies have made digital control increasingly popular among the researchers worldwide. And that led to the study of discrete-time sliding mode control design and its implementation. This brief presents, a method for multi-rate frequency shaped sliding mode controller design based on switching and non-switching type of reaching law. In this approach, the frequency dependent compensator dynamics are introduced through a frequency-shaped sliding surface by assigning frequency dependent weighing matrices in a linear quadratic regulator (LQR) design procedure. In this way, the undesired high frequency dynamics or certain frequency disturbance can be eliminated. The states are implicitly obtained by measuring the output at a faster rate than the control. It is also known that the vibration control of smart structure is a challenging problem as it has several vibratory modes. So, the frequency shaping approach is used to suppress the frequency dynamics excited during sliding mode in smart structure. The frequency content of the optimal sliding mode is shaped by using a frequency dependent compensator, such that a higher gain can be obtained at the resonance frequencies. The brief discusses the design methods of the controllers based on the proposed approach for the vibration suppression of the intelligent structure. The brief also presents a design of discrete-time reduced order observer using the duality to discrete-time sliding surface design. First, the duality between the coef?cients of the discrete-time reduced order observer and the sliding surface design is established and then, the design method for the observer using Riccati equation is explained. Using the proposed method, the observer forthe Power System Stabilizer (PSS) for Single Machine In?nite Bus (SMIB) system is designed and the simulation is carried out using the observed states. The discrete-time sliding mode controller based on the proposed reduced order observer design method is also obtained for a laboratory experimental servo system and veri?ed with the experimental results.
Introduction.- Preliminaries of Sliding Mode Control.- Multirate Output Feedback Frequency Shaped SMC: A Switching Type Control Law.- Multirate Output Feedback Frequency Shaped SMC : A Non-Switching Type Control Law.- Reduced Order Observer Design using Duality to Sliding Surface Design.

Dr. Axaykumar Mehta Born in Bharu0ch, Gujarat, India in 1975 and got B.E. Electrical (1996), M.Tech (2002) and Ph.D. (2009) degree from Gujarat University Ahmedabad, IIT Kharagpur and IIT Mumbai, respectively. He worked as an Associate Faculty at Indian Institute Technology, Gandhinagar during 2010-2011. He also acted as Professor; Director at Gujarat Power Engineering and Research Institute, Mehsana, Gujarat, India during 2012-2014. Currently, he is an Associate Professor at Institute of Infrastructure Technology Research and Management, Ahmedabad, Gujarat. His research interest is Non-linear Sliding Mode Control and Observer, Sliding Mode Control Application in Electrical Engineering and Networked Control System. He has published 30 research papers in peer reviewed international journals and conferences of repute. He is Senior Member IEEE, Life Member of Institution of Engineers (India), Life Member of Indian Society for Technical Education and Member of Systems Society of India. He is conferred the Best paper award by SSI and Pedagogical Innovation award 2014 by Gujarat Technological University.

Prof. Bijnan Bandyopadhyay received his B.E. degree in Electronics and Telecommunication Engineering from the University of Calcutta, Calcutta, India in 1978, and Ph.D. in Electrical Engineering from the Indian Institute of Technology, Delhi, India in 1986. In 1987, he joined the Interdisciplinary Programme in Systems and Control Engineering, Indian Institute of Technology Bombay, India, as a faculty member, where he is currently a Professor. In 1996, he was with the Lehrstuhl fur Elektrische Steuerung und Regelung, Ruhr Universitat Bochum, Bochum, Germany, as an Alexander von Humboldt Fellow. He has been a visiting Professor at Okayama University, Japan, Korea Advance Institute Science and Technology (KAIST) South Korea and Chiba National University in 2007. He visited University of Western Australia, Australia as a Gledden Visiting Senior Fellow in 2007.Profes

Discusses robust controller design methods Useful for research students in the field of Variable Structure System Includes practical implementation of the algorithms Includes supplementary material: sn.pub/extras

Date de parution :

Ouvrage de 95 p.

15.5x23.5 cm

Disponible chez l'éditeur (délai d'approvisionnement : 15 jours).

52,74 €

Ajouter au panier