Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex
FRANCE

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02


Url canonique : www.lavoisier.fr/livre/medecine/wearable-antennas-and-body-centric-communication/descriptif_4695433
Url courte ou permalien : www.lavoisier.fr/livre/notice.asp?ouvrage=4695433

Wearable Antennas and Body Centric Communication, 1st ed. 2021 Present and Future Lecture Notes in Electrical Engineering Series, Vol. 787

Langue : Anglais

Auteurs :

Couverture de l’ouvrage Wearable Antennas and Body Centric Communication
This book presents state-of-the-art technologies, trends and applications with a focus on the healthcare domain for ultra-wideband (3.1?10.6 GHz) and 60 GHz (57?66 GHz) wireless communication systems. Due to various key features such as miniaturized antenna design, low power, high data rate, less effects on the human body, relatively less crowded spectrum, these technologies are becoming popular in various fields of biomedical applications and day-to-day life. The book highlights various aspects of these technologies related to body-centric communication, including antenna design requirements, channel modeling and characterization for WBANs, current fabrication and antenna design strategies for textile, flexible and implanted antennas. Apart from the general requirements and study related to these frequency bands, various application specific topics such as localization and tracking, physical activity recognition and assessment, vital sign monitoring and medical imaging are covered in detail. The book concludes with the glimpses of future aspects of the UWB and 60 GHz technology which includes IoT for healthcare and smart living, novel antenna materials and application of machine learning algorithms for overall performance enhancement.

1.                  Introduction

            1.1       Wireless Body Centric Communication

            1.2       The Wireless Body Area Network  

1.3       History of Wireless Personal Area and Local Area Networks

1.4       State of the Art Technologies

                        1.4.1 ISM Band 2.4 GHz

                        1.4.2 UWB 3-10 GHz

                         1.4.3 0.3-10 THz

1.5         Applications

1.6        Scope of the Book

References

 

2.                  On-Body Radio Wave Propagation

 

            2.1       Introduction

            2.2       Wearable Antenna Requirements

                        2.2.1    Design Strategy and Fabrication Methodologies

                        2.2.2    Simulation Based Approach- Performance Analysis

                        2.2.3    Anechoic Environment Measurements

                        2.2.4    Indoor Environment Measurements

            2.3       Wearable Antenna Radiation Pattern Variation

                        2.3.1    Influence of Antenna Location on the Body

                        2.3.2    Effect of Different Postures and Limb Movements

            2.4       Channel Modeling

            2.5       Statistical On-Body Measurement Results

                        2.5.1    UWB 3-10 GHz

                        2.5.2    mmWave 60 GHz

            2.6       Dynamic On-Body Communication Channels

            2.7       Applications

            2.6       Conclusion

                        References

 

3.         Indoor OFF-Body and Body-to-Body Communication-UWB and mmWave Technologies

            3.1       Introduction

            3.2       The Indoor Propagation Environment

            3.3       Indoor Environment Influence on Body-Centric Channels

            3.3.1    Anechoic Chamber

            3.3.2    Indoor Environment

             3.4       Wearable Communication Channel Links

            3.4.1    Potential Placement of Wearable Links

            3.4.2    mmWave- 60GHz

            3.5       Channel Characterization And Modeling

            3.5.1    UWB 3-10 GHz

                        3.5.1.1 Large Scale Fading

                        3.5.1.2 Small Scale Fading

            3.5.2    mmWave-60GHz

                        3.5.2.1 Large Scale Fading

                        3.5.2.2 Small Scale Fading

             3.6       Conclusion

                        References

 

4.         Flexible Wearable Technologies-Design and Fabrication

            4.1       Introduction

            4.2       Flexible Materials for Wearable Antennas

                        4.2.1    Textile Antennas

                        4.2.2    Paper and Kapton Based Antennas

                        4.2.3    Novel materials for Textile Antennas

            4.3       Fabrication Techniques and Procedures

            4.4       Antenna Design Strategies and Performance Evaluation

                        4.4.1    Antenna Design Requirements

                        4.4.2    Simulation Based Study and Analysis

                        4.4.3    Flexible Antenna Performance-Experimental Approach

            4.5       Characterization and Body-Centric Measurements

                        4.5.1    Performance on Human Body

                        4.5.2    Deformation Effects

                        4.5.3    Specific Absorption Rate (SAR)

            4.6       Current and Future Applications

            4.7       Conclusion

                        References

 

5.         Implantable Antennas for WBAN’s

            5.1       Introduction

5.2       Numerical Modelling

                        5.2.1    Numerical Tissue Phantom

                                    5.2.1.1 Modelling of the Human Body

                                    5.2.1.2 EM Wave Propagation Aspects

                        5.2.2    Simulation Scenarios

                        5.2.3    Frequency Bands

                                    5.2.3.1 3-10 GHz UWB

                                    5.2.3.2 mmWave 60GHz

            5.3       Antenna Structures and Performance

                        5.3.1    Design Aspects

                        5.3.2    Fabrication Procedures

                        5.3.3    Performance Analysis

            5.4       Channel Modelling and Communication Link Analysis

5.4.1    In Vitro Measurements

5.4.2    In Vivo Measurements

            5.5       Biocompatibility Issues and Safety Considerations

            5.6       Conclusion

                        References

                       

6.         Indoor Localization and Tracking

            6.1       Introduction

            6.2       Algorithms and Techniques

                        6.2.1    Experimental Set-up

                        6.2.2    Channel Parameter Based Localization Algorithm

            6.3       Human Body Localization

                        6.3.1    TDOA/TOA Data Fusion Algorithm

                        6.3.2    RSS-Based Location Estimation Approach

                        6.3.2    Angle of Arrival and DOA Techniques

            6.4       Base Station Configurations

                        6.4.1    GDOP Analysis

                        6.4.2    Influence of Base Station Configuration and Localization Accuracy

            6.5       Channel Classification and Analysis-Experimental Investigations

                        6.5.1    Path Loss Analysis

                        6.5.2    RMS Delay Spread

                        6.5.3    Multipath Components Estimation

            6.6       Localization Accuracy Analysis

            6.7       Comparison with Optical Based Motion Capture System

            6.8       Human Subject Detection in Indoor Environments

            6.9       Conclusion

                        References

7.         Monitoring and Assessment of Physical Activities

         7.1       Introduction

         7.2       Importance of Activity Monitoring in Healthcare Domain

         7.3       Current Trends and Technologies

7.3.1    ISM Band 2.4 GHz

7.3.2    UWB and mmWave Bands

7.3.3    Sensor Based Activity Monitoring

         7.4       Methodology

7.4.1    Measurement Set up

7.4.2    Algorithm for Activity Assessment

         7.5       Activity Recognition and Monitoring

                     7.5.1    Upper Limb Activities

                     7.5.2    Lower Limb Activities

         7.6       Activity Monitoring Accuracy

7.6.1    Accuracy in Monitoring Process

7.6.2    Influence of Channel Link Type on Estimated Accuracy

7.6.3    Precision and Complexity Analysis

            7.7       Daily Activity Monitoring

         7.8       Conclusion     

                     References

8.         Wearable Antennas for Vital Sign Monitoring

         8.1       Introduction

         8.2       Non-invasive Methods for Vital Sign Monitoring

8.2.1    Antenna Types and Design Strategies

8.2.2    Non-contact UWB and mmWave Systems

8.2.3    Techniques and System Requirements

            8.2.3.1 IR-UWB Radar

            8.2.3.2 mmWave System

         8.3       Breath Activity Monitoring

         8.4       Heart Beat Monitoring

         8.5       Accuracy and Performance Evaluation of Vital Sign Monitoring

         8.6       Conclusion

  References

9.            UWB and mmWave Technologies for Medical Imaging Applications

         9.1       Introduction

         9.2       Imaging Principal and Techniques

9.2.1        Synthetic Aperture Radar (SAR) Imaging

9.2.2        Through-Wall Radar Imaging  

9.3       Antenna Design Considerations

         9.4       Methods of Phantom Preparation

         9.5       Medical Imaging for Breast Cancer Detection

         9.6       Image Processing and Reconstruction Algorithms

         9.7       Conclusion

                     References

          

10.       Future Aspects

         10.1     IOT for Smart Living and Healthcare

10.1.1  Smart Solutions for Remote Monitoring

10.1.2  Telehealth and Telesurgery

10.1.3  Emergency Notification System

         10.2     Advance Materials for Wearable Antenna Design

10.2.1  Graphene and Nano-particle Based Antennas

10.2.2  3D Printing Based Antennas

10.2.3  Novel Electro-Textile and Materials

10.2.4  Meta-materials and Electromagnetic Band Gap (EBG) Structures

10.2.5  Implantable and Epidermal Antennas

         10.3     Machine Learning for Improved Well-Being

             10.3.1 Classification Algorithms

10.3.2  Diagnostics and Prevention

10.3.3  Assessment and Prediction

10.3.4  Accuracy Enhancement

10.3.5  Applications

         10.4     Miniaturization and Performance Enhancement of Wearable Antenna 

References

Index
Shiban Kishen Koul is an emeritus professor at the Indian Institute of Technology, Delhi. His research interests include: RF MEMS, high frequency wireless communication, microwave engineering, microwave passive and active circuits, device modeling, millimeter wave IC design, body area networks, flexible and wearable electronics and reconfigurable microwave circuits including miniaturized antennas. He has successfully completed 38 major sponsored projects, 52 consultancy projects, and 61 technology development projects. He has authored/co-authored 510 research papers, 13 state-of-the-art books, 4 book chapters and two E-books. He holds 20 patents, 6 copyrights and 1 trademark. He is a life fellow of IEEE and fellow of INAE and IETE.  He is the chief editor of IETE Journal of Research and an associate editor of the International Journal of Microwave and Wireless Technologies, Cambridge University Press. He served as a distinguished microwave lecturer of IEEE MTT-S for the period 2012-2014. He is recipient of numerous awards including IEEE MTT Society Distinguished Educator Award (2014), Teaching Excellence Award (2012) from IIT Delhi, Indian National Science Academy (INSA) Young Scientist Award (1986); Top Invention Award (1991) of the National Research Development Council for his contributions to the indigenous development of ferrite phase shifter technology; VASVIK Award (1994) for the development of  Ka- band components and phase shifters; Ram Lal Wadhwa Gold Medal (1995) from the Institution of Electronics and Communication Engineers (IETE); Academic Excellence Award (1998) from Indian Government for his pioneering contributions to phase control modules for Rajendra Radar, Shri Om Prakash Bhasin Award (2009) in the field of Electronics and Information Technology, VASVIK Award (2012) for the contributions made to the area of Information, Communication Technology (ICT) and M N Saha Memorial Award  (2013) from IETE. 
 <

Highlights trends and applications for ultra-wideband wireless communication systems for wearable devices

Includes topics such as physical activity recognition and assessment, vital sign monitoring, and medical imaging

Presents the future aspects of the UWB and 60 GHz technology which includes IoT for healthcare and smart living

Date de parution :

Ouvrage de 312 p.

15.5x23.5 cm

Disponible chez l'éditeur (délai d'approvisionnement : 15 jours).

Prix indicatif 89,66 €

Ajouter au panier

Date de parution :

Ouvrage de 312 p.

15.5x23.5 cm

Disponible chez l'éditeur (délai d'approvisionnement : 15 jours).

Prix indicatif 126,59 €

Ajouter au panier