Architecture and Design of Molecule Logic Gates and Atom Circuits, 2013
Proceedings of the 2nd AtMol European Workshop

Advances in Atom and Single Molecule Machines Series

Coordinators: Lorente Nicolas, Joachim Christian

Language: English
Cover of the book Architecture and Design of Molecule Logic Gates and Atom Circuits

Subject for Architecture and Design of Molecule Logic Gates and Atom...

Approximative price 158.24 €

In Print (Delivery period: 15 days).

Add to cartAdd to cart
Architecture and Design of Molecule Logic Gates and Atom Circuits
Publication date:
Support: Print on demand

Approximative price 158.24 €

In Print (Delivery period: 15 days).

Add to cartAdd to cart
Architecture and Design of Molecule Logic Gates and Atom Circuits
Publication date:
290 p. · 15.5x23.5 cm · Hardback

Have you ever puzzled over how to perform Boolean logic at the atomic scale? Or wondered how you can carry out more general calculations in one single molecule or using a surface dangling bond atomic scale circuit? This volume gives you an update on the design of single molecule devices, such as recitfiers, switches and transistors, more advanced semi-classical and quantum boolean gates integrated in a single molecule or constructed atom by atom on a passivated semi-conductor surface and describes their interconnections with adapted nano-scale wiring. The main contributors to the field of single molecule logic gates and surface dangling bond atomic scale circuits theory and design, were brought together for the first time to contribute on topics such as molecule circuits, surface dangling bond circuits, quantum controlled logic gates and molecular qubits. Contributions in this volume originate from the Barcelona workshop of the AtMol conference series, held from January 12-13 2012.

Architecture at the End of Moore.-

MOLECULAR DEVICES FOR CLASSICAL LOGIC.- Towards Post-CMOS Molecular logic devices.- Quantum interference effects in electron transport: How to select suitable molecules for logic gates and thermoelectric devices.- Mapping electron transport pathways in complex systems.- Switching mechanisms for single molecule logic gates.- PTM radicals for molecular-based electronic devices.- Vibrational heating in Single Molecule.- Heat Dissipation in Molecular Junctions: linking Molecules to Macroscopic Contacts.- MOLECULE-CIRCUITS.- Classical Logic in a Single Molecule.- Modelling and simulation of electron transport at the nanoscale: illustrations in low-dimensional carbon nanostructures.- First-principles simulations of electronic transport in dangling-bond wires.- Dangling Bond Logic: Designing Boolean Logic Gates on a Si(001)-(2x1):H surface.- Large dangling bond electronic circuits with supporting surface and contacting nano-pads.- A model for inelastic transport through atomic surface wires.- QUANTUM CONTROLLED LOGIC GATES.- Single molecule can calculate 1000 times faster than supercomputers.- Realization of complex logic operations at the nanoscale.- Binary full adder in a single quantum system parallelization using the Quantum Hamiltonian Computing approach.- MOLECULAR QUBITS.- A controlled Quantum SWAP logic gate in a 4-Center metal complex.- Molecular prototypes for spin-based quantum logic gates.- Implementing quantum gates and algorithms in ultracold polar molecules.

.- Towards Post-CMOS Molecular logic devices.- Quantum interference effects in electron transport: How to select suitable molecules for logic gates and thermoelectric devices.- Mapping electron transport pathways in complex systems.- Switching mechanisms for single molecule logic gates.- PTM radicals for molecular-based electronic devices.- Vibrational heating in Single Molecule.- Heat Dissipation in Molecular Junctions: linking Molecules to Macroscopic Contacts.- MOLECULE-CIRCUITS.- Classical Logic in a Single Molecule.- Modelling and simulation of electron transport at the nanoscale: illustrations in low-dimensional carbon nanostructures.- First-principles simulations of electronic transport in dangling-bond wires.- Dangling Bond Logic: Designing Boolean Logic Gates on a Si(001)-(2x1):H surface.- Large dangling bond electronic circuits with supporting surface and contacting nano-pads.- A model for inelastic transport through atomic surface wires.- QUANTUM CONTROLLED LOGIC GATES.- Single molecule can calculate 1000 times faster than supercomputers.- Realization of complex logic operations at the nanoscale.- Binary full adder in a single quantum system parallelization using the Quantum Hamiltonian Computing approach.- MOLECULAR QUBITS.- A controlled Quantum SWAP logic gate in a 4-Center metal complex.- Molecular prototypes for spin-based quantum logic gates.- Implementing quantum gates and algorithms in ultracold polar molecules.

Contributions from experts in the field of single molecule logic gates and surface dangling bond atomic scale circuits theory

Includes supplementary material: sn.pub/extras