Characterization of Zeolite-Based Coatings for Adsorption Heat Pumps, 2015
SpringerBriefs in Applied Sciences and Technology Series

Authors:

Language: English
Publication date:
96 p. · 15.5x23.5 cm · Paperback

This book proposes a radically new approach for characterizing thermophysical and mechanical properties of zeolite-based adsorbent coatings for Adsorptive Heat Transformers (AHT). It presents a developed standard protocol for the complete characterization of advanced coated adsorbers. Providing an in-depth analysis of the different procedures necessary for evaluating the performance of adsorbers, it also presents an analysis of their stability under the hydrothermal and mechanical stresses during their entire life cycle.

Adsorptive Heat Transformers (AHT), especially adsorption chillers and heat pumps, are considered to be promising technologies to increase thermal energy efficiency. Nevertheless, an overall increase in performance of this apparatus is necessary for them to be considered a mature technology to be used commercially. Development of innovative coated adsorbers can be perceived as a key issue for the enhancement of AHT technology. This procedure relies on the deposition, either by means of a binder or by direct crystallization, of the adsorbent material over a metallic heat exchanger, aiming at the improvement of the heat transfer between the external heat source and the adsorbent itself.

This book offers a valuable resource to those working on the development of novel adsorbent materials and advanced adsorbent beds for heating and cooling applications. It is also intended for researchers interested in renewable energy and energy efficiency. 

Basics of Adsorption Heat Pump Processes.- Adsorption Heat Exchangers.- Hydrothermal Stability of Adsorbent Coatings.- Mechanical Stability of Adsorbent Coatings.

Dr.-Eng. Angelo Freni graduated in Materials Engineering at the University of Messina in 1998. He holds a Ph.D. in Materials and Chemical engineering from the University of Messina. He has been at the Italian National Council of Research - Institute for Advanced Energy Technologies (CNR-ITAE), Messina, since 1998. He has worked on thermally-driven heat pumps, heat and hydrogen storage, has published more than 130 printed papers in the field, plus 3 patents. He has been carrying out and leading scientific activities in the framework of National and International programs, in co-operation with industries and research groups. Currently, he is Head of the research group on “Thermally Driven Heat Pumps” at CNR ITAE. He is the Italian alternate delegate in the Executive Committee of the Heat Pump Programme of the International Energy Agency. He is member of the commission “E2 - Heat pumps, energy recovery” of the IIR – International Institute of Refrigeration.

 Dr.-Eng. Belal Dawoud graduated and got his M.Sc. degree in mechanical power engineering at the Faculty of Engineering, El-Menoufiya University, Egypt in 1993. He received his Dr.-Ing. Degree in energy engineering from RWTH-Aachen University, Germany in 1999. Till December 2005, he worked as a post doctor and research group leader for thermal applications of solar and sorption technologies at the institute of technical thermodynamics of RWTH-Aachen University. He has been an ASHRAE-Member since 2005 and since January 2006 he has been working at the Viessmann Werke in Allendorf/Eder, Germany as a project leader, group leader and since 2009 as a manager of research and development of thermally driven heat pumps (TDHPs). He published a book (VDI project final report) on the development of a gas driven zeolite adsorption heat pump in 2011 and more than 34 printed papers in the fields of adsorption and absorption heat pumps as well as greenhouse desalination and energy systems’analysis. In additi

Illustrates a developed standard protocol for the complete characterization of advanced coated adsorbers Provides a deep analysis of the different procedures necessary for the evaluation of the achievable performance of the adsorber Offers a comprehensive examination of the stability of the adsorber against the hydrothermal and mechanical stresses undergone during its entire life cycle Includes supplementary material: sn.pub/extras