Magnetism, 2012
Basics and Applications

Author:

Language: English

52.74 €

In Print (Delivery period: 15 days).

Add to cartAdd to cart
Magnetism
Publication date:
336 p. · 15.5x23.5 cm · Paperback

52.74 €

In Print (Delivery period: 15 days).

Add to cartAdd to cart
Magnetism: basics and applications for engineers and physicists
Publication date:
336 p. · 15.5x23.5 cm · Hardback

This textbook is aimed at engineering students who are likely to come across magnetics applications in their professional practice. Whether designing lithography equipment containing ferromagnetic brushes, or detecting defects in aeronautics, some basic knowledge of 21st century magnetism is needed. From the magnetic tape on the pocket credit card to the read head in a personal computer, people run into magnetism in many products. Furthermore, in a variety of disciplines tools of the trade exploit magnetic principles, and many interdisciplinary laboratory research areas cross paths with magnetic phenomena that may seem mysterious to the untrained mind. Therefore, this course offers a broad coverage of magnetism topics encountered more often in this millenium, revealing key concepts on which many practical applications rest. Some traditional subjects in magnetism are discussed in the first half of the book, followed by areas likely to spark the curiosity of those moreinterested in today?s technological achievements. Although sometimes some aspects may seem difficult to comprehend at first, bibliography directs the reader to appropriate further study. Throughout the chapters, the student is encouraged to discover the not-so-obvious associations between different magnetics topics, a task that will prove to be at the very least rewarding.

Traditional Magnetism.- The Magnetization Process. Micromagnetism.- Magnetic Nondestructive Testing Techniques.- Uses of the Magneto-Optical Effect.- Magnetoelectric Materials.- Giant Magnetoresistance, Spin Valves.- Introduction to Spintronics.- Some Magnetic Recording Media Developments.- Concluding Remarks

Dr. Stefanita is a physicist/materials scientist who received her Ph. D. degree in Physics (Magnetic Nondestructive Testing and Materials Characterization) from Queen’s University, Kingston, Ontario, Canada in 1999. Her Ph.D. thesis was "Surface Magnetic Barkhausen Noise Response To Plastic Yield of Steel". Previously, she received her Diploma of Engineer in Physics (Technological Physics) from the University of Bucharest, Romania in 1989 with the thesis "Apparatus for Measuring Solar Radiation Using a Thin Film Transducer". Dr. Stefanita also has a 1984 Baccalaureate in Mathematics and Physics from the German School of Bucharest in Romania.

Dr. Stefanita has over 15 years collective experience in academia and industry with international exposure on 3 continents, and 5 countries. Her research projects in nanotechnology have covered self-assembled metallic and semiconductor nanowires or nanodots, spintronics, magnetotransport, Hall effect, and infrared absorption and transmission. Her other work in magnetism involved magnetic behavior of plastically deformed steel, microyielding phenomena, cold rolling effects on magnetic properties, and magnetic nondestructive testing techniques for detecting defects in steel components. She has also developed a prototype for a medical diagnostics apparatus based on a thin film interference filter. Dr. Stefanita’s work in industry as a materials scientist covered areas of failure analysis, scanning electron microscopy, energy dispersive X- ray analysis, atomic emission spectroscopy and import of chemicals and raw materials. The university courses she taught include subjects in the fields of solid state devices, electromagnetics, and mechanics of deformables. Dr. Stefanita is a regular referee for nanotechnology papers, as well as a published author of a magnetics book, two book chapters, journal papers, conference publications, and internal reports.

Dr. Stefanita is a co-founder and Senior Partner with NanoDotTek

Complete and up-to-date textbook on magnetism for students of engineering and physics Includes all the latest developments like nanomagnetism, giant and colossal magnetoresistance, spintronics Also deals strongly with applications to magnetic storaging Uniquely integrates physics, materials sciences and technological basics Provides exercises and solutions as learning and teaching material Includes supplementary material: sn.pub/extras