Natural Products of Woody Plants, 1989
Chemicals Extraneous to the Lignocellulosic Cell Wall

Springer Series in Wood Science Series

Coordinator: Rowe John W.

Language: English

Approximative price 158.24 €

In Print (Delivery period: 15 days).

Add to cartAdd to cart
Publication date:
1243 p. · 17x24.2 cm · Paperback
Wood as found in trees and bushes was of primary importance to ancient humans in their struggle to control their environment. Subsequent evolution through the Bronze and Iron Ages up to our present technologically advanced society has hardly diminished the importance of wood. Today, its role as a source of paper products, furniture, building materials, and fuel is still of major significance. Wood consists of a mixture of polymers, often referred to as lignocellulose. The cellulose micro fibrils consist of an immensely strong, linear polymer of glucose. They are associated with smaller, more complex polymers composed of various sugars called hemicelluloses. These polysaccharides are embedded in an amorphous phenylpropane polymer, lignin, creating a remarkably strong com­ posite structure, the lignocellulosic cell wall. Wood also contains materials that are largely extraneous to this lignocellulosic cell wall. These extracellular substances can range from less than 1070 to about 35% of the dry weight of the wood, but the usual range is 2% -10%. Among these components are the mineral constituents, salts of calcium, potassium, sodium, and other metals, particularly those present in the soil where the tree is growing. Some of the extraneous components of wood are too insoluble to be ex­ tracted by inert solvents and remain to give extractive-free wood its color; very often these are high-molecular-weight polyphenolics.
1 Introduction and Historical Background.- 1.1 Historical Uses of Extractives and Exudates.- 1.1.1 Introduction.- 1.1.2 Major Uses of Extractives and Exudates.- 1.1.2.1 The Use of Durable Woods.- 1.1.2.2 Exudates.- 1.1.2.2.1 Varnishes.- 1.1.2.2.2 Lacquers.- 1.1.2.2.3 Gums.- 1.1.2.3 Tannins.- 1.1.2.4 Dyes.- 1.1.2.5 Perfumes.- 1.1.2.6 Rubber.- 1.1.2.7 Medicines.- 1.1.3 Lessons from History.- References.- 1.2 Natural Products Chemistry — Past and Future.- 1.2.1 Introduction.- 1.2.2 Isolation and Purification.- 1.2.3 Structure Determination.- 1.2.4 The Future of Natural Products Science.- References.- 2 Fractionation and Proof of Structure of Natural Products.- 2.1 Introduction.- 2.2 Novel Techniques and Recent Developments in Fractionation and Isolation.- 2.2.1 Countercurrent Chromatography.- 2.2.1.1 Coil Countercurrent Chromatography.- 2.2.1.2 Droplet Countercurrent Chromatography.- 2.2.1.3 Rotation Locular Countercurrent Chromatography.- 2.2.1.4 Centrifugal Partition Chromatography.- 2.2.1.5 Comparison of Partition Chromatographic Methods.- 2.2.2 Adsorption Chromatography.- 2.2.2.1 Ion-Pair Chromatography.- 2.2.2.2 Other New Methods of Column Chromatography.- 2.2.2.3 Supercritical Fluid Chromatography.- 2.3 Nuclear Magnetic Resonance Spectroscopy.- 2.3.1 Proton Nuclear Magnetic Resonance.- 2.3.1.1 Difference Decoupling.- 2.3.1.2 Difference NOE.- 2.3.1.3 Contact Shifts.- 2.3.1.4 Partial Relaxation.- 2.3.2 Carbon Nuclear Magnetic Resonance.- 2.3.2.1 J-Modulated Spin Echo.- 2.3.2.2 Insensitive Nuclei Enhanced by Polarization Transfer.- 2.3.2.3 Distortionless Enhancement by Polarization Transfer.- 2.3.2.4 Carbon-Proton Heteronuclear Coupling.- 2.3.2.5 Carbon-Proton Heteronuclear NOE.- 2.3.2.6 Deuterium Isotopic Shifts.- 2.3.3 Two-Dimensional NMR Spectroscopy.- 2.3.3.1 Two Dimensional J-Resolved Proton NMR Spectroscopy.- 2.3.3.2 Two Dimensional Correlation Spectroscopy.- 2.3.3.3 Two Dimensional-INADEQUATE (Incredible Natural Abundance Double Quantum Transfer Experiment).- 2.4 Other Spectroscopic Techniques.- 2.4.1 Mass Spectrometry.- 2.4.1.1 Techniques That Enhance Sample Volatilization.- 2.4.1.2 Modern Techniques of Ionization/Desorption.- 2.4.1.3 Tandem Mass Spectrometry.- 2.4.2 Ultraviolet-Visible Spectroscopy.- 2.4.3 Infra-Red Spectroscopy.- 2.4.4 Circular Dichroism.- 2.4.4.1 The Nature of Circular Dichroism.- 2.4.4.2 The Additivity Relation in A Values.- 2.5 General Conclusions.- References.- 3 Evolution of Natural Products.- 3.1 Convergent Synthesis and the Origin of RNA-Based Life.- 3.2 Expansion of the Acetate, Mevalonate, and ?-Aminolevulinate Pathways in Bacteria and Algae.- 3.3 Expansion of the Shikimate Pathway in Terrestrial Plants.- 3.4 Phytochemistry and Plant Defense.- 3.5 Oxidation Levels of Angiospermous Micromolecules.- 3.6 Skeletal Specialization of Angiospermous Micromolecules.- 3.7 Quantification of Micromolecular Parameters.- 3.8 Phytochemical Gradients in Angiosperms.- 3.9 Future Perspectives.- References.- 4 Carbohydrates.- 4.1 Introduction.- 4.2 Sucrose.- 4.3 Higher Oligosaccharides Related to Sucrose.- 4.4 Other Oligosaccharides.- 4.5 Monosaccharides.- 4.6 Alditols.- 4.7 Cyclitols.- 4.7.1 myo-Inositol.- 4.7.2 D-chiro-Inositol.- 4.7.3 Quebrachitol.- 4.7.4 D-Quercitol.- 4.7.5 Conduritol.- 4.7.6 Quinic Acid.- 4.8 Plant Glycosides.- 4.9 Starch.- 4.10 Extractable Polysaccharides.- 4.10.1 Arabinogalactans.- 4.10.1.1 Larch Arabinogalactans.- 4.10.1.2 Other Extractable, Nonexudate Arabinogalactans.- 4.10.2 Other Extractable Polysaccharides; The Pectic Polysaccharides….- 4.10.3 Exudate Gums.- 4.10.3.1 Acacia Gums.- 4.10.3.2 Exudate Gums of Other Rosales Genera.- 4.10.3.3 Gums of Combretaceae (Myrtiflorae) Genera.- 4.10.3.4 Exudate Gums of Anacardiaceae (Sapindales).- 4.10.3.5 Exudate Gums of Families in the Orders Rutales, Parietales, and Malvales.- 4.10.3.6 Exudate Gums from Other Orders.- 4.10.3.7 Exudate Gums with Xylan Cores.- References.- 5 Nitrogenous Extractives.- 5.1 Amino Acids, Proteins, Enzymes, and Nuccleic Acids.- 5.1.1 Introduction.- 5.1.2 Composition.- 5.1.2.1 Free and Bound Amino Acids.- 5.1.2.2 Proteins and Enzymes.- 5.1.2.3 Nucleic Acids and Related Products.- 5.1.3 Factors Determining Composition.- 5.1.3.1 Genetics.- 5.1.3.2 Genetics x Environment.- 5.1.3.3 Growth and Development.- 5.1.3.4 Pathology.- 5.1.3.5 Impact of Humans.- 5.1.4 Conclusion.- References.- 5.2 The Alkaloids.- 5.2.1 Introduction.- 5.2.2 True Alkaloids.- 5.2.2.1 Alkaloids from Ornithine.- 5.2.2.1.1 Coca Alkaloids.- 5.2.2.1.2 Elaeocarpus Alkaloids.- 5.2.2.2 Alkaloids from Lysine.- 5.2.2.2.1 Punica Alkaloids.- 5.2.2.2.2 Lythraceae Alkaloids.- 5.2.2.2.3 Securinega Alkaloids.- 5.2.2.2.4 Cytisus Alkaloids.- 5.2.2.3 Alkaloids from Anthranilic Acid.- 5.2.2.3.1 Quinoline and Furoquinoline Alkaloids.- 5.2.2.3.2 Acridone Alkaloids.- 5.2.2.3.3 Evodia Alkaloids.- 5.2.2.3.4 Carbazole Alkaloids.- 5.2.2.4 Alkaloids from Nicotinic Acid (Celastraceae Alkaloids).- 5.2.2.5 Alkaloids from Phenylalanine and Tyrosine.- 5.2.2.5.1 Benzylisoquinoline Alkaloids.- 5.2.2.5.2 Curare Alkaloids.- 5.2.2.5.3 Sinomenine.- 5.2.2.5.4 Aporphine-type Alkaloids.- 5.2.2.5.5 Berberine.- 5.2.2.5.6 Nitidine.- 5.2.2.5.7 Erythrina Alkaloids.- 5.2.2.5.8 Cephalotaxus Alkaloids.- 5.2.2.5.9 Ipecacuanha and Alangium Alkaloids.- 5.2.2.6 Alkaloids from Tryptophan.- 5.2.2.6.1 Calycanthus Alkaloids.- 5.2.2.6.2 Picrasma (Pentaceras) and Carboline Alkaloids.- 5.2.2.6.3 Rauwolfia Alkaloids.- 5.2.2.6.4 Tabernanthe Alkaloids.- 5.2.2.6.5 Ochrosia Alkaloids.- 5.2.2.6.6 Ervatamia Alkaloids.- 5.2.2.6.7 Uncaria-Mitragyna Alkaloids.- 5.2.2.6.8 Yohimbe Alkaloids.- 5.2.2.6.9 Cinchona Alkaloids.- 5.2.2.6.10 Guettarda Alkaloids.- 5.2.2.6.11 Strychnos Alkaloids.- 5.2.2.6.12 Gelsemium Alkaloids.- 5.2.2.6.13 Gardneria Alkaloids.- 5.2.2.6.14 Camptothecins.- 5.2.3 Pseudoalkaloids.- 5.2.3.1 Alkaloids from Polyketides.- 5.2.3.1.1 Pinidine.- 5.2.3.1.2 Galbulimima Alkaloids.- 5.2.3.2 Alkaloids from Mevalonate.- 5.2.3.2.1 Spiraea Alkaloids.- 5.2.3.2.2 Erythrophleum Alkaloids.- 5.2.3.2.3 Daphniphyllum Alkaloids.- 5.2.3.2.4 Apocynaceae Steroidal Alkaloids.- 5.2.3.2.5 Buxaceae Steroidal Alkaloids.- References.- 6 Aliphatic and Alicyclic Extractives.- 6.1 Simple Organic Acids.- 6.1.1 Introduction.- 6.1.2 Organic Acids in the TCA and Glyoxylate Cycles.- 6.1.2.1 Citric Acid.- 6.1.2.2 AconiticAcid.- 6.1.2.3 Isocitric Acid.- 6.1.2.4 ?-Ketoglutaric Acid.- 6.1.2.5 Succinic Acid.- 6.1.2.6 Fumaric Acid.- 6.1.2.7 Malic Acid.- 6.1.2.8 Oxaloacetic Acid.- 6.1.2.9 Glyoxylic Acid.- 6.1.3 Other Metabolically Important Organic Acids.- 6.1.3.1 Glycolic Acid.- 6.1.3.2 Glyceric Acid.- 6.1.3.3 Pyruvic Acid.- 6.1.3.4 Malonic Acid.- 6.1.3.5 Shikimic Acid and Quinic Acid.- 6.1.4 Organic Acids of an End-Product Nature.- 6.1.4.1 Lactic Acid.- 6.1.4.2 Oxalic Acid.- 6.1.4.3 Tartaric Acid.- 6.1.4.4 Chelidonic Acid.- 6.1.4.5 Fluoroacetic Acid.- References.- 6.2 Complex Aliphatic and Alicyclic Extractives.- 6.2.1 Introduction.- 6.2.2 ?-Lactones.- 6.2.3 ?-Lactones (2-Pyrones).- 6.2.4 Cyanogenic Glycosides and Related Compounds.- 6.2.5 Highly Oxygenated Cyclohexanes.- 6.2.6 Cyclohexane Diols.- 6.2.7 Polycyclic Compounds.- 6.2.8 Miscellaneous.- References.- 6.3 Fats and Fatty Acids.- 6.3.1 Introduction.- 6.3.2 Fats as Food Reserves.- 6.3.3 Aliphatic Monocarboxylic Acids.- 6.3.3.1 Volatile Fatty Acids.- 6.3.3.2 Constituent Fatty Acids of Fats.- References.- 6.4 Chemistry, Biochemistry, and Function of Suberin and Associated Waxes.- 6.4.1 Introduction.- 6.4.2 Waxes.- 6.4.2.1 Analysis of Plant Waxes.- 6.4.2.2 Composition of Suberin-Associated Waxes.- 6.4.2.2.1 Hydrocarbons in Suberin-Associated Waxes.- 6.4.2.2.2 Wax Esters.- 6.4.2.2.3 Free Fatty Alcohols.- 6.4.2.2.4 Free Fatty Acids.- 6.4.2.2.5 Polar Wax Components.- 6.4.2.2.6 Ferulic Acid Esters.- 6.4.2.2.7 Tabular Survey of Bark Wax Components.- 6.4.2.3 Biosynthesis of Wax Components.- 6.4.2.3.1 Very Long Fatty Acids.- 6.4.2.3.2 Fatty Alcohols.- 6.4.2.3.3 Wax Esters.- 6.4.2.3.4 Hydrocarbons and Derivatives.- 6.4.3 Suberin.- 6.4.3.1 Ultrastructure.- 6.4.3.1.1 Ultrastructural Characterization.- 6.4.3.1.2 Ultrastructural Identification of Suberin in Bark.- 6.4.3.2 Chemical Composition and Structure of the Polymer.- 6.4.3.2.1 Composition of the Aliphatic Portion.- 6.4.3.2.2 Phenolic Composition.- 6.4.3.2.3 Structure.- 6.4.3.3 Suberin Biosynthesis.- 6.4.3.3.1 Biosynthesis of the Aliphatic Monomers.- 6.4.3.3.1.1 ?-Hydroxylation of Fatty Acids.- 6.4.3.3.1.2 Oxidation of ?-Hydroxy Acids.- 6.4.3.3.1.3 Biosynthesis of Mid-Chain Oxygenated Suberin Monomers.- 6.4.3.3.2 Biosynthesis of the Aromatic Components of Suberin.- 6.4.3.3.3 Biosynthesis of Suberin from Aliphatic and Aromatic Monomers.- 6.4.3.4 Function of Suberin and Associated Waxes.- 6.4.3.4.1 Prevention of Water Loss.- 6.4.3.4.2 Suberization in Wound Healing.- 6.4.3.4.3 Suberization in Response to Stress.- 6.4.3.4.4 Suberization as a Means of Compartmentalization.- 6.4.3.5 Regulation of Suberization.- 6.4.3.6 Enzymatic Degradation of Suberin.- References.- 7 Benzenoid Extractives.- 7.1 Monoaryl Natural Products.- 7.1.1 Introduction.- 7.1.2 Simple Phenols (C6).- 7.1.3 Phenolic Acids, Salicins and Other C6–C1 Compounds.- 7.1.3.1 Benzoic Acids and Related Compounds.- 7.1.3.2 Salicins and Related Compounds.- 7.1.4 Acetophenones and Other C6–C2 Compounds.- 7.1.5 Cinnamic Acids, Coumarins and Other Phenylpropanoids (C6–C3).- 7.1.5.1 Cinnamic Acids.- 7.1.5.2 Coumarins.- 7.1.5.3 Other Phenylpropanoids.- 7.1.6 Miscellaneous Monoaryl Compounds.- References.- 7.2 Gallic Acid Derivatives and Hydrolyzable Tannins.- 7.2.1 Introduction.- 7.2.2 Metabolism of Gallic Acid — General Observations.- 7.2.3 Biosynthesis of Gallic Acid.- 7.2.4 Metabolites of Gallic Acid.- 7.2.4.1 Simple Esters Occurrence and Detection.- 7.2.4.2 Depside Metabolites Group 2A.- 7.2.4.3 Metabolites Formed by Oxidative Coupling of Galloyl Esters Groups 2B and 2C, Ellagitannins.- 7.2.4.3.1 Hexahydroxydiphenoyl Esters.- 7.2.4.3.2 Dehydrohexahydroxydiphenoyl Esters.- 7.2.4.3.3 Group 2B Metabolites.- 7.2.4.3.4 Group 2C Metabolites.- 7.2.4.3.5 Postscript.- 7.2.5 The Interaction of Proteins with Metabolites of Gallic Acid.- References.- 7.3 Lignans.- 7.3.1 Introduction.- 7.3.2 Nomenclature and Numbering.- 7.3.3 Chemistry.- 7.3.4 Oligomeric Lignoids.- References.- 7.4 Stilbenes, Conioids, and Other Polyaryl Natural Products.- 7.4.1 Introduction.- 7.4.2 Stilbenes and Structurally Related Compounds.- 7.4.3 Conioids (Norlignans), Including Condensed and Structurally Related Compounds.- 7.4.4 Aucuparins and Structurally Related Biphenyls.- 7.4.5 Diarylheptanoids, Structurally Related Diarylheptanoids, and Bridged Biphenyls (Cyclophanes).- 7.4.6 Miscellaneous Diaryl and Polyaromatic Compounds.- 7.4.7 Concluding Remarks.- References.- 7.5 Flavonoids.- 7.5.1 Introduction.- 7.5.2 Structural Types.- 7.5.2.1 Flavones and Flavonols.- 7.5.2.2 Flavonones and Flavononols.- 7.5.2.3 Chalcones and Aurones.- 7.5.2.4 Isoflavonoids and Neoflavonoids.- 7.5.3 Distribution.- 7.5.3.1 Distribution within the Plant.- 7.5.3.2 Patterns in Gymnosperm Woods.- 7.5.3.3 Patterns in Angiosperm Woods.- 7.5.3.3.1 Heartwood Flavonoids of the Anacardiaceae.- 7.5.3.3.2 Heartwood Flavonoids of the Leguminosae.- 7.5.4 Properties and Function.- References.- 7.6 Biflavonoids and Proanthocyanidins.- 7.6.1 Introduction.- 7.6.2 Biflavonoids.- 7.6.2.1 Structural Variations of Biflavonoids.- 7.6.2.2 Distribution of Biflavonoids.- 7.6.2.3 Significant Properties of Biflavonoids.- 7.6.3 Proanthocyanidins.- 7.6.3.1 Flavan-3-ols.- 7.6.3.1.1 Structure of Flavan-3-ols.- 7.6.3.1.2 Distribution of Flavan-3-ols.- 7.6.3.1.3 Reactions of Flavan-3-ols.- 7.6.3.2 Flavan-3,4-diols.- 7.6.3.2.1 Structure of Flavan-3,4-diols.- 7.6.3.2.2 Distribution of Flavan-3,4-diols.- 7.6.3.2.3 Reactions of Flavan-3,4-diols.- 7.6.3.3 Oligomeric Proanthocyanidins.- 7.6.3.3.1 Structure and Distribution of Oligomeric Proanthocyanidins.- 7.6.3.3.1.1 Proquibourtinidins.- 7.6.3.3.1.2 Profisetinidins.- 7.6.3.3.1.3 Prorobinetinidins.- 7.6.3.3.1.4 Proteracacidins and Promelacacidins.- 7.6.3.3.1.5 Propelargonidins.- 7.6.3.3.1.6 Procyanidins.- 7.6.3.3.1.7 Prodelphinidins.- 7.6.3.3.2 Reactions of Oligomeric Proanthocyanidins.- References.- 7.7 Condensed Tannins.- 7.7.1 Introduction.- 7.7.2 Structure and Properties.- 7.7.2.1 Isolation and Purification.- 7.7.2.2 Elucidation of the Structure of Type 1 Proanthocyanidin Polymers.- 7.7.2.3 Structure of Type 2 Proanthocyanidin Polymers.- 7.7.2.4 Molecular Weight Distribution.- 7.7.2.5 Conformation and Solution Properties.- 7.7.2.6 Complexation.- 7.7.3 Distribution in Plants.- 7.7.3.1 Chemotaxonomic and Phylogenetic Significance.- 7.7.3.2 Distribution and Structural Variations within Plants.- 7.7.4 Metabolism.- 7.7.4.1 Biosynthesis.- 7.7.4.2 Seasonal Variation and Fate in Senescent Tissues.- 7.7.5 Role in Plants.- 7.7.5.1 Resistance to Insects.- 7.7.5.2 Resistance to Decay Fungi.- 7.7.5.3 Allelopathic Relationships.- References.- 8 Isoprenoids.- 8.1 Terpenoids.- 8.1.1 Introduction.- 8.1.1.1 Nomenclature.- 8.1.1.2 Biosynthesis.- 8.1.2 Occurrence in Woody Plants.- 8.1.3 Classes: Distribution and Structural Types.- 8.1.3.1 Hemiterpenoids.- 8.1.3.2 Monoterpenoids.- 8.1.3.2.1 Distribution.- 8.1.3.2.2 Structural Types.- 8.1.3.2.3 Tropolones.- 8.1.3.3 Sesquiterpenoids.- 8.1.3.3.1 Distribution.- 8.1.3.3.2 Structural Types.- 8.1.3.4 Diterpenoids.- 8.1.3.4.1 Distribution.- 8.1.3.4.2 Structural Types.- 8.1.3.5 Sesterterpenoids.- 8.1.3.6 Non-Steroidal Triterpenoids.- 8.1.3.6.1 Distribution.- 8.1.3.6.2 Structural Types.- 8.1.3.7 Tetraterpenoids: Carotenoids.- 8.1.3.8 Polyterpenoids: Polyprenols.- 8.1.3.9 Meroterpenoids.- 8.1.4 Biological Role.- References.- 8.2 Steroids.- 8.2.1 Introduction.- 8.2.1.1 Meaning of the Terms “Steroid” and “Sterol”.- 8.2.1.2 Nomenclature.- 8.2.1.3 Biosynthesis of Basic Steroidal Structure.- 8.2.2 Sterols.- 8.2.2.1 Names, Structures, and Organismic Relationships.- 8.2.2.2 Identification of Sterols.- 8.2.2.3 Occurrence in Wood and Bark.- 8.2.2.4 Biosynthetic Origin of Individual Sterols.- 8.2.2.5 Function of Sterols.- 8.2.2.6 Phyletic and Phylogenetic Relationships.- 8.2.2.7 Industrial Utilization of Tree Sterols.- 8.2.3 Esters.- 8.2.4 Glycosides.- 8.2.5 Spiroketals (Saponins).- 8.2.6 Ecdysteroids.- 8.2.6.1 Names, Structures, and Occurrence.- 8.2.6.2 Function of Plant Ecdysteroids.- 8.2.7 Cardiac Glycosides.- References.- 9 The Influence of Extractives on Wood Properties and Utilization.- 9.1 Contribution of Extractives to Wood Characteristics.- 9.1.1 Introduction.- 9.1.2 Color in Wood.- 9.1.2.1 Chemical Structure and Color.- 9.1.2.2 Color of Wood.- 9.1.2.3 Pigments Occurring in Wood.- 9.1.3 Odor in Wood.- 9.1.3.1 Volatile Components.- 9.1.3.2 Fragrant Components.- 9.1.3.3 Foul-Smelling Components.- 9.1.3.4 Removal of Foul Odors.- 9.1.3.5 Insect Attractants.- 9.1.4 Physical Properties.- 9.1.4.1 Wood Density and Strength.- 9.1.4.2 Other Physical Properties.- References.- 9.2 Role of Wood Exudates and Extractives in Protecting Wood from Decay.- 9.2.1 Introduction.- 9.2.1.1 Decay.- 9.2.1.2 Decay-Causing Organisms and Their Effect on Wood Structure.- 9.2.2 How Trees Defend Themselves Against Decay.- 9.2.2.1 Role of Wounds.- 9.2.2.2 Toxic Heartwood Components.- 9.2.2.2.1 Formation of Antimicrobial Compounds.- 9.2.2.2.2 Chemical Nature of Antimicrobial Compounds.- 9.2.3 Evaluation of Decay Resistance.- 9.2.3.1 Isolation and Evaluation of Compounds.- 9.2.3.2 Physiology of Decay Inhibition.- 9.2.3.3 Variation in Decay Resistance.- 9.2.3.3.1 Variation Between Tree Species.- 9.2.3.3.2 Variation Between Individuals of the Same Species.- 9.2.3.3.3 Variation Within an Individual Tree.- References.- 9.3 Effect of Extractives on Pulping.- 9.3.1 Introduction.- 9.3.2 Pulping Processes.- 9.3.2.1 Mechanical.- 9.3.2.2 Semichemical.- 9.3.2.3 Chemical.- 9.3.3 Pulpwood Quality.- 9.3.3.1 Effect of Extractives on Pulp Yield.- 9.3.3.2 Effect of Storage.- 9.3.4 Increased Consumption of Pulping Liquors.- 9.3.5 Effect on Pulping Processes.- 9.3.5.1 Reduced Penetrability of Liquors.- 9.3.5.2 Reduced Lignin Solubility.- 9.3.6 Effect on Equipment during Pulping.- 9.3.6.1 Wear and Corrosion.- 9.3.6.2 Blockage and Deposits.- 9.3.7 Pulp Properties.- 9.3.7.1 Color Changes Arising during Pulping and Bleaching.- 9.3.7.1.1 Mechanical Pulps.- 9.3.7.1.2 Chemical Pulps.- 9.3.7.2 Speck Formation and Pitch Problems during Pulping and Bleaching.- 9.3.7.3 Wettability.- 9.3.7.4 Sticking to Press Rolls.- 9.3.8 Spent Liquor Recovery.- 9.3.8.1 Concentration and Burning Difficulties.- 9.3.8.2 Foaming during Concentration and Oxidation.- 9.3.8.3 By-Product Recovery.- 9.3.9 Observations.- References.- 9.4 Effect of Extractives on the Utilization of Wood.- 9.4.1 Introduction.- 9.4.2 Inhibition of Resin and Glue Curing by Extractives.- 9.4.2.1 Phenolic Resin Adhesives.- 9.4.2.2 Amino Resin Adhesives.- 9.4.3 Inhibition of Cement Hardening by Extractives.- 9.4.3.1 Effect of Extractives on Cement Hardening.- 9.4.3.2 Effect of Light Exposure on Wood Panels Used with Cement.- 9.4.4 Color Change by Light.- 9.4.4.1 Color Changes Upon Exposure to Light.- 9.4.4.2 Color Changes by Other Agents.- References.- 9.5 Health Hazards Associated with Extractives.- 9.5.1 Introduction.- 9.5.2 Toxic Extractives.- 9.5.2.1 Alkaloids and Amino Acids.- 9.5.2.2 Saponins and Glycosides.- 9.5.2.3 Quinones.- 9.5.2.4 Phenolics.- 9.5.2.5 Terpenes.- 9.5.3 Allergenic Extractives.- 9.5.3.1 Quinones.- 9.5.3.2 Alkyl Phenols.- 9.5.3.3 Terpenes.- 9.5.3.4 Phenolics.- 9.5.3.5 Other Allergenic Extractives.- 9.5.4 Carcinogenic Extractives.- 9.5.4.1 Early Work.- 9.5.4.2 Hausen’s Contributions.- 9.5.4.3 Tannin.- 9.5.4.4 Other Carcinogenic Extractives.- 9.5.5 Hygiene and Safety.- 9.5.6 Discussion and Further Research.- 9.5.6.1 Discussion.- 9.5.6.2 Future Research.- References.- 10 The Utilization of Wood Extractives.- 10.1 Naval Stores.- 10.1.1 Introduction.- 10.1.2 Naval Stores Sources.- 10.1.2.1 Gum Naval Stores.- 10.1.2.2 Wood Naval Stores.- 10.1.2.3 Sulfate (Kraft) Naval Stores 9$.- 10.1.2.4 Potential New Sources.- 10.1.3 Turpentine.- 10.1.3.1 Pine Oil.- 10.1.3.2 Polyterpene Resins.- 10.1.3.3 Flavors and Fragrances.- 10.1.3.4 Insecticides.- 10.1.3.5 Miscellaneous Uses.- 10.1.4 Rosin.- 10.1.4.1 Paper Size.- 10.1.4.2 Polymerization Emulsifiers.- 10.1.4.3 Adhesives.- 10.1.4.4 Inks.- 10.1.4.5 Other Market Areas.- 10.1.5 Fatty Acids.- 10.1.5.1 Intermediate Chemicals.- 10.1.5.2 Protective Coatings.- 10.1.5.3 Other Uses.- 10.1.6 Miscellaneous Products.- 10.1.7 The Future for Naval Stores.- References.- 10.2 Gums.- 10.2.1 Introduction.- 10.2.2 Larch Arabinogalactan.- 10.2.2.1 Source.- 10.2.2.2 Production.- 10.2.2.3 Purification.- 10.2.2.4 Properties.- 10.2.2.5 Uses.- 10.2.3 Gum Arabic (Gum Acacia, Acacia Gum).- 10.2.3.1 Source, Production, and Purification.- 10.2.3.2 Properties.- 10.2.3.3 Uses.- 10.2.4 Gum Karaya.- 10.2.5 Gum Tragacanth.- 10.2.6 Gum Ghatti.- 10.2.7 Predictions.- References.- 10.3 Significance of the Condensed Tannins.- 10.3.1 Introduction.- 10.3.2 Tannins as Human and Animal Nutrition Factors.- 10.3.3 Pharmacological and Physiological Properties.- 10.3.4 Tannins as Insect, Mollusc, Bacterial, and Fungal Control Factors.- 10.3.5 Leather Tannage.- 10.3.5.1 Mechanisms of Vegetable Tanning.- 10.3.5.2 Vegetable Tanning Processes.- 10.3.5.3 Treatment of Vegetable Tanning Spent Liquors.- 10.3.6 Condensed Tannins in Wood Adhesives.- 10.3.6.1 Wattle Tannin-Based Particleboard Adhesives.- 10.3.6.2 Wattle Tannin-Based Plywood Adhesives.- 10.3.6.3 Wattle Tannin-Based Laminating Adhesives.- 10.3.6.4 Other Wattle Tannin-Based Adhesives.- 10.3.6.5 Conifer Bark and Related Tannins as Particleboard Adhesives….- 10.3.6.6 Conifer Bark and Related Tannins as Plywood Adhesives.- 10.3.6.7 Conifer Bark and Related Tannins in Cold-Setting Phenolic Resins.- 10.3.7 Specialty Polymer Applications.- References.- 10.4 Rubber, Gutta, and Chicle.- 10.4.1 Introduction.- 10.4.2 Historical Development of Natural Rubber Production.- 10.4.2.1 Hevea brasiliensis.- 10.4.2.2 Guayule.- 10.4.3 Natural Rubber Production Processes.- 10.4.3.1 Rubber Tree Growing.- 10.4.3.2 Latex Collection.- 10.4.3.3 Production of Latex Concentrate.- 10.4.3.4 Production of Dry Rubber.- 10.4.4 Packing and Market Grades.- 10.4.4.1 Packing.- 10.4.4.2 Grading.- 10.4.5 Properties.- 10.4.5.1 Natural Rubber.- 10.4.5.2 Modified Natural Rubber.- 10.4.5.2.1 Deproteinized Rubber.- 10.4.5.2.2 Depolymerized Rubber.- 10.4.5.2.3 Peptized Rubber.- 10.4.5.2.4 Oil Extended Natural Rubber (OENR).- 10.4.5.2.5 MG Rubbers.- 10.4.5.2.6 SP Rubbers.- 10.4.6 Natural Rubber Utilization.- 10.4.6.1 Vulcanization.- 10.4.6.2 Transportation Items.- 10.4.6.3 Mechanical Rubber Goods.- 10.4.6.4 Footwear.- 10.4.6.5 Miscellaneous Uses.- 10.4.6.6 Health and Safety Factors.- 10.4.7 Natural Rubber Economy.- 10.4.8 Gutta Percha and Balata.- 10.4.8.1 Production.- 10.4.8.2 Properties and Uses.- 10.4.9 Chicle.- References.- 10.5 Other Extractives and Chemical Intermediates.- 10.5.1 Introduction.- 10.5.2 Conifer Extractives Utilization.- 10.5.2.1 Balsams, Copals, Amber, and Other Products.- 10.5.2.2 Cedar Wood Oils.- 10.5.2.3 Non-Commercial Extractives.- 10.5.2.3.1 Conidendrin.- 10.5.2.3.2 Dihydroquercetin.- 10.5.2.3.3 Juvabione and Related Insect Hormones.- 10.5.2.3.4 Occidentals.- 10.5.2.3.5 PlicaticAcid.- 10.5.2.3.6 Thujaplicins, Thujic Acid, and Methyl Esters.- 10.5.2.3.7 Waxes.- 10.5.3 Hardwood Extractives Utilization.- 10.5.4 Prospects.- References.- 10.6 Pharmacologically Active Metabolites.- 10.6.1 Introduction.- 10.6.2 Sources of Information.- 10.6.3 Currently Used Drugs Produced in Wood.- 10.6.3.1 Alkaloids.- 10.6.3.1.1 Tropane.- 10.6.3.1.2 Quinolizidine.- 10.6.3.1.3 Phenylalanine Derivatives.- 10.6.3.1.3.1 Simple Tyramine Derivatives.- 10.6.3.1.3.2 Protoberberine.- 10.6.3.1.3.3 Phthalideisoquinoline.- 10.6.3.1.3.4 Benzo(c)phenanthridine.- 10.6.3.1.3.5 Ipecac.- 10.6.3.1.4 Tryptophane Derivatives.- 10.6.3.1.4.1 Indole.- 10.6.3.1.4.2 Quinoline.- 10.6.3.2 Quinoids.- 10.6.3.3 Lignans.- 10.6.3.4 Triterpenes.- 10.6.3.5 Pyrones.- 10.6.3.6 Coumarins.- 10.6.4 Potential Drugs Derived from Secondary Metabolites of Wood.- 10.6.4.1 Alkaloids.- 10.6.4.1.1 Tropane.- 10.6.4.1.2 Isoquinoline.- 10.6.4.1.3 Indole Alkaloids.- 10.6.4.1.4 Ansamacrolides.- 10.6.4.1.5 Quinazoline.- 10.6.4.1.6 Pyrazine Derivatives.- 10.6.4.2 Quinoids.- 10.6.4.3 Lignans.- 10.6.4.4 Diterpenes.- 10.6.4.5 Triterpenes.- 10.6.4.6 Flavonoids.- 10.6.5 Summary and Conclusions.- References.- 11 The Future of Wood Extractives.- 11.1 Introduction.- 11.2 Requirements for Future Wood Extractives Ventures.- 11.2.1 Low Investment Risk.- 11.2.2 Good Sales Potential.- 11.2.3 Inexpensive Raw Material.- 11.2.4 Shared Capital Expense.- 11.2.5 National Priority.- 11.2.6 Realistic Research, Development, and Engineering.- 11.3 Prospects for Existing Extractives-Based Industries.- 11.3.1 Natural Rubber.- 11.3.2 Rosin and Terpenes from Pine.- 11.3.3 Carbohydrate Gums.- 11.3.4 Tannins.- 11.4 Failed Wood Extractives Ventures.- 11.5 Future Directions for Industrially Oriented Extractives Research.- 11.5.1 Control of Extractives Deposition.- 11.5.2 Manipulation of Wood Growth by Chemicals.- 11.5.3 New Techniques for Extractives Isolation.- 11.6 Areas of Needed Basic Research.- 11.6.1 Cambial Constituents: Growth Regulators.- 11.6.2 Root Constituents: Role of Mycorrhizae.- 11.6.3 Environmental Relationships.- 11.6.4 Pharmacologically Active Compounds.- 11.6.5 Phenolic Polymers.- 11.6.6 Sites and Control Mechanisms of Biosynthesis.- 11.7 Conclusions.- References.- Index of Plant Genera and Species.- Organic Compounds Index.