Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex
FRANCE

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02


Url canonique : www.lavoisier.fr/livre/autre/novel-three-state-quantum-dot-gate-field-effect-transistor/descriptif_2833224
Url courte ou permalien : www.lavoisier.fr/livre/notice.asp?ouvrage=2833224

Novel Three-state Quantum Dot Gate Field Effect Transistor, Softcover reprint of the original 1st ed. 2014 Fabrication, Modeling and Applications

Langue : Anglais

Auteur :

Couverture de l’ouvrage Novel Three-state Quantum Dot Gate Field Effect Transistor

The book presents the fabrication and circuit modeling of quantum dot gate field effect transistor (QDGFET) and quantum dot gate NMOS inverter (QDNMOS inverter). It also introduces the development of a circuit model of QDGFET based on Berkley Short Channel IGFET model (BSIM). Different ternary logic circuits based on QDGFET are also investigated in this book. Advanced circuit such as three-bit and six bit analog-to-digital converter (ADC) and digital-to-analog converter (DAC) were also simulated.

Introduction: Multi State Devices and Logic.- Quantum Dot Gate Field Effect Transistor Device Structures.- Quantum Dot Gate Field Effect Transistors Fabrication and Characterization.- Quantum DOT Gate Field Effect Transistors Theory and Device Modeling.- Quantum Dot Gate NMOS Inverter.- Quantum Dot Gate Field Effect Transistor (QDGFET): Circuit Model and Ternary Logic Inverter.- Analog-to-Digital Converter (ADC) and Digital-to-Analog Converter (DAC) Using Quantum DOT Gate Field Effect Transistor (QDGFET).- Performance in SUB-25nm Range.- Conclusions.

Dr. Supriya Karmakar is currently working as an Engineer in Intel Corporation, Hillsboro, Oregon, USA. Dr. Karmakar completed his PhD in Electrical Engineering from University of Connecticut in the year 2011. The specialization was "Novel Three State Quantum Dot Gate Field Effect Transistor: Fabrication, Modeling and Applications". He has five years experience in semiconductor device fabrication and circuit modeling in his PhD academic career in Department of Electrical and Computer Engineering, University of Connecticut. He has modified different photolithography processes and metal organic chemical vapor deposition (MOCVD) techniques to fabricate various types of semiconductor devices like quantum dot gate field effect transistor (QDGFET), quantum dot gate non-volatile memory (QDNVM), quantum dot channel field effect transistors (QDCFET), Solar Cells etc. for different projects. He is also an expert in designing different types of masks for photolithography as well as E-Beam lithography. Dr. Karmakar has also published more than 30 papers in international peer-reviewed journals and conference proceedings.

Introduces a novel semiconductor device for multi valued logic implementation which can make reader to continue new research in this direction in future Provides details of step-by-step foundation of quantum dot gate field effect transistor Discusses three state logic design fundamentals Entails the simple comparator design and its application in designing ADC and DAC

Date de parution :

Ouvrage de 134 p.

15.5x23.5 cm

Disponible chez l'éditeur (délai d'approvisionnement : 15 jours).

105,49 €

Ajouter au panier

Date de parution :

Ouvrage de 134 p.

15.5x23.5 cm

Disponible chez l'éditeur (délai d'approvisionnement : 15 jours).

105,49 €

Ajouter au panier