Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex
FRANCE

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02


Url canonique : www.lavoisier.fr/livre/autre/observer-based-fault-estimation-techniques/descriptif_3842731
Url courte ou permalien : www.lavoisier.fr/livre/notice.asp?ouvrage=3842731

Observer-Based Fault Estimation Techniques, 1st ed. 2018 Studies in Systems, Decision and Control Series, Vol. 127

Langue : Anglais

Auteurs :

Couverture de l’ouvrage Observer-Based Fault Estimation Techniques

This book investigates observer-fault estimation techniques in detail, while also highlighting recent research and findings regarding fault estimation. Many practical control systems are subject to possible malfunctions, which may cause significant performance loss or even system instability. To improve the reliability, performance and safety of dynamical systems, fault diagnosis techniques are now receiving considerable attention, both in research and applications, and have been the subject of intensive investigations. Fault detection ? the essential first step in fault diagnosis ? is a binary decision-making process used to determine whether or not a fault has occurred. In turn, fault isolation is used to identify the location of the faulty component, while fault estimation is used to identify the size of the fault online. Compared with the problems involved in fault detection and isolation, fault estimation is considerably more challenging.

Introduction.- Fault Estimation of Continuous-Time Systems in Finite-Frequency Domain.- Fault Estimation of Discrete-Time Systems in Finite-Frequency Domain.- Fault Estimation of Fuzzy Systems in Finite-Frequency Domain.- Fault Estimation with Finite-Time Convergence Specification.- AP-Based Fault Estimation.- H∞ and H2 Distributed Fault Estimation for MAS.- Adaptive Technique-Based Distributed Fault Estimation for MAS.- AP-Based Distributed Fault Estimation for MAS.- Conclusions.

Ke Zhang received the Ph.D. degree in Control Theory and Engineering in 2012 from Nanjing University of Aeronautics and Astronautics, Nanjing, China. From October 2009 to March 2010, he was a Visiting Student with the Systèmes et Applications des Technologies de l’Information et de l’Energie, Ecole Normale Supérieure de Cachan, Cachan, France. His research interests cover fault diagnosis and fault-tolerant control for dynamic systems and their applications. He has published more than 30 papers in international journals, including IEEE Transactions on Fuzzy Systems, IEEE Transactions on Cybernetics, IET Control Theory and Applications, International Journal of Control, etc. Dr. Zhang currently serves as an Associate Editor for Nonlinear Analysis: Hybrid Systems, and a Reviewer for many important international journals, including Automatica, IEEE Transactions on Automatic Control, etc. He is a senior member of the IEEE.

Bin Jiang was born in Jiangxi, China, in 19

66. He received the Ph.D. degree in Automatic Control from Northeastern University, Shenyang, China, in 1995. He had ever been a Post-Doctoral Fellow, a Research Fellow, and a Visiting Professor in Singapore, France, USA, and Canada, respectively. He is currently a Chair Professor of Cheung Kong Scholar Program with the Ministry of Education and the Dean of the College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China. His current research interests include fault diagnosis and fault-tolerant control and their applications. Prof. Jiang currently serves as an Associate Editor or an Editorial Board Member for a number of journals, such as the IEEE Transactions on Control Systems Technology, The IEEE Transactions on Fuzzy Systems, the International Journal of Control, Automation and Systems, Nonlinear Analysis: Hybrid Systems, the International Journal of Applied Mathematics and Computer Science, Acta Automatica Sinica, and the Journal of Astr
Investigates observer-based fault estimation techniques in detail Presents recent research on fault estimation Written by respected experts in the field Includes supplementary material: sn.pub/extras

Date de parution :

Ouvrage de 187 p.

15.5x23.5 cm

Disponible chez l'éditeur (délai d'approvisionnement : 15 jours).

105,49 €

Ajouter au panier

Date de parution :

Ouvrage de 187 p.

15.5x23.5 cm

Disponible chez l'éditeur (délai d'approvisionnement : 15 jours).

105,49 €

Ajouter au panier