Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex
FRANCE

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02


Url canonique : www.lavoisier.fr/livre/autre/physics-of-solid-state-laser-materials-molecular-and-optical-physics-series-vol-1/powell/descriptif_1820650
Url courte ou permalien : www.lavoisier.fr/livre/notice.asp?ouvrage=1820650

Physics of Solid-State Laser Materials, Softcover reprint of the original 1st ed. 1998 Atomic, Molecular and Optical Physics Series, Vol. 1

Langue : Anglais

Auteur :

Couverture de l’ouvrage Physics of Solid-State Laser Materials
This graduate-level text presents the fundamental physics of solid-state lasers, including the basis of laser action and the optical and electronic properties of laser materials. After an overview of the topic, the first part begins with a review of quantum mechanics and solid-state physics, spectroscopy, and crystal field theory; it then treats the quantum theory of radiation, the emission and absorption of radiation, and nonlinear optics; concluding with discussions of lattice vibrations and ion-ion interactions, and their effects on optical properties and laser action. The second part treats specific solid-state laser materials, the prototypical ruby and Nd-YAG systems being treated in greatest detail; and the book concludes with a discussion of novel and non-standard materials. Some knowledge of quantum mechanics and solid-state physics is assumed, but the discussion is as self-contained as possible, making this an excellent reference, as well as useful for independent study.
1. Introduction.- 1.1 Solid-State Laser Operation and Design Parameters.- 1.2 Material Requirements for Laser Hosts and Active Ions.- 1.3 Material Preparation and Optical Quality.- References.- 2. Electronic Energy Levels.- 2.1 Free-Ion Energy Levels.- 2.2 Elements of Group Theory.- 2.3 Crystal-Field Splitting of Energy Levels.- References.- 3. Radiative Transitions.- 3.1 The Photon Field.- 3.2 Selection Rules.- 3.3 Properties of Spectral Lines.- 3.4 Nonlinear Optical Properties.- References.- 4. Electron-Phonon Interactions.- 4.1 The Phonon Field.- 4.2 Weak Coupling: Radiationless Transitions.- 4.3 Weak Coupling: Vibronic Transitions.- 4.4 Weak Coupling: Spectral Linewidth and Line Position.- 4.5 Example: Spectral Properties of SrTiO3: Cr3+.- 4.6 Strong Coupling.- 4.7 Jahn—Teller Effect.- References.- 5. Ion-Ion Interaction.- 5.1 Exchange-Coupled Ion Pairs.- 5.2 Nonradiative Energy Transfer: Single-Step Process.- 5.3 Phonon-Assisted Energy Transfer.- 5.4 Nonradiative Energy Transfer: Multistep Process.- 5.5 Connection with Experiment: Rate Equation Analysis.- References.- 6. Al2O3: Cr3+ Laser Crystals.- 6.1 Energy Levels of Cr3+.- 6.2 Crystal-Field Splitting.- 6.3 Spin-Orbit Splitting and Selection Rules.- 6.4 Strong-Field Laser Materials.- References.- 7. Transition-Metal-Ion Laser Materials.- 7.1 Broad-Band Cr3+ Laser Materials: Alexandrite.- 7.2 Spectral Properties of Cr3+ in Different Hosts and Their Laser Characteristics.- 7.3 Transition-Metal Ions and Host Crystals.- 7.4 Laser Materials Based on Ti3+ Ions.- 7.5 Laser Materials Based on Ions with 3d2 Configurations.- 7.6 Laser Materials Based on Ions with 3d3 Through 3d8Configurations.- References.- 8. Y3A15012: Nd3+ Laser Crystals.- 8.1 Energy Levels of Nd3+.- 8.2 Crystal-Field Splitting.- 8.3 Radiative Transitions: Judd-Ofelt Theory.- 8.4 Example: Y3A15O12:Nd3+.- References.- 9. Rare-Earth-Ion Laser Materials.- 9.1 Nd3+ Lasers.- 9.2 Other Trivalent Lanthanide Lasers.- References.- 10. Miscellaneous Laser Materials.- 10.1 Other Rare-Earth-Ion Lasers.- 10.2 Nonlinear Optical Lasers.- 10.3 Color-Center Lasers.- 10.4 Other Solid-State Lasers.- References.

The development of new and better solid-state lasers with specific operating characteristics is currently one of the most important areas of scientific research.

This professional reference presents the fundamental physics of solid-state lasers, including the basis of laser action and the optical and electronic properties of laser materials.

Powell is director of the Optical Science Center at the University of Arizona, one of the worlds preeminent centers of optical research.

Level of presentation makes it useful to the non-expert, e.g., for electrical engineers.

Many tables and illustrations make it very useful as a reference.

Date de parution :

Ouvrage de 423 p.

15.5x23.5 cm

Disponible chez l'éditeur (délai d'approvisionnement : 15 jours).

Prix indicatif 52,74 €

Ajouter au panier