Reading the Archive of Earth's Oxygenation, 2013
Volume 2: The Core Archive of the Fennoscandian Arctic Russia - Drilling Early Earth Project

Frontiers in Earth Sciences Series

Language: English
Cover of the book Reading the Archive of Earth's Oxygenation

Subjects for Reading the Archive of Earth's Oxygenation

Keywords

climate change

158.24 €

In Print (Delivery period: 15 days).

Add to cartAdd to cart
Reading the Archive of Earth's Oxygenation
Publication date:
Support: Print on demand

Approximative price 158.24 €

In Print (Delivery period: 15 days).

Add to cartAdd to cart
Reading the archive of earths oxygenation
Publication date:
554 p. · 21x27.9 cm · Paperback

 

Earth?s present-day environments are the outcome of a 4.5 billion year period of evolution reflecting the interaction of global-scale geological and biological processes punctuated by several extraordinary events and episodes that perturbed the entire Earth system. One of the earliest and arguably greatest of these events was a substantial increase (orders of magnitude) in the atmospheric oxygen abundance, sometimes referred to as the Great Oxidation Event.
Volume 2: The Core Archive of the Fennoscandian Arctic Russia - Drilling Early Earth Project provides a description of the newly generated archive hosting ICDP's FAR-DEEP drill cores through key geological formations in Russian Fennoscandia. The book contains several hundred high-quality, representative photographs illustrating 3650 m of fresh, uncontaminated core documenting a series of global palaeoenvironmental upheavals linked to the Great Oxidation Event. The core exhibits sedimentary and volcanic formations that record a transition from anoxic to oxic Earth surface environments, the first global glaciation (the Huronian glaciation), an unprecedented perturbation of the global carbon cycle (the Lomagundi-Jatulian Event), a radical increase in the size of the seawater sulphate reservoir, an apparent upper mantle oxidising event, the Earth's earliest documented sedimentary phosphates, one of the greatest accumulations of organic matter (the Shunga Event) and generation of the Earth's earliest supergiant petroleum deposit. The volume highlights the potential of the FAR-DEEP core archive for future research of the Great Oxidation Event and the biogeochemical cycles operating during that time. Welcome to the illustrative journey through one of the most exciting periods of planet Earth!

Earth?s present-day environments are the outcome of a 4.5 billion year period of evolution reflecting the interaction of global-scale geological and biological processes punctuated by several extraordinary events and episodes that perturbed the entire Earth system. One of the earliest and arguably greatest of these events was a substantial increase (orders of magnitude) in the atmospheric oxygen abundance, sometimes referred to as the Great Oxidation Event.
Volume 2: The Core Archive of the Fennoscandian Arctic Russia - Drilling Early Earth Project provides a description of the newly generated archive hosting ICDP's FAR-DEEP drill cores through key geological formations in Russian Fennoscandia. The book contains several hundred high-quality, representative photographs illustrating 3650 m of fresh, uncontaminated core documenting a series of global palaeoenvironmental upheavals linked to the Great Oxidation Event. The core exhibits sedimentary and volcanic formations that record a transition from anoxic to oxic Earth surface environments, the first global glaciation (the Huronian glaciation), an unprecedented perturbation of the global carbon cycle (the Lomagundi-Jatulian Event), a radical increase in the size of the seawater sulphate reservoir, an apparent upper mantle oxidising event, the Earth's earliest documented sedimentary phosphates, one of the greatest accumulations of organic matter (the Shunga Event) and generation of the Earth's earliest supergiant petroleum deposit. The volume highlights the potential of the FAR-DEEP core archive for future research of the Great Oxidation Event and the biogeochemical cycles operating during that time. 
Welcome to the illustrative journey through one of the most exciting periods of planet Earth!

Earth?s present-day environments are the outcome of a 4.5 billion year period of evolution reflecting the interaction of global-scale geological and biological processes punctuated by several extraordinary events and episodes that perturbed the entire Earth system. One of the earliest and arguably greatest of these events was a substantial increase (orders of magnitude) in the atmospheric oxygen abundance, sometimes referred to as the Great Oxidation Event.
Volume 2: The Core Archive of the Fennoscandian Arctic Russia - Drilling Early Earth Project provides a description of the newly generated archive hosting ICDP's FAR-DEEP drill cores through key geological formations in Russian Fennoscandia. The book contains several hundred high-quality, representative photographs illustrating 3650 m of fresh, uncontaminated core documenting a series of global palaeoenvironmental upheavals linked to the Great Oxidation Event. The core exhibits sedimentary and volcanic formations that record a transition from anoxic to oxic Earth surface environments, the first global glaciation (the Huronian glaciation), an unprecedented perturbation of the global carbon cycle (the Lomagundi-Jatulian Event), a radical increase in the size of the seawater sulphate reservoir, an apparent upper mantle oxidising event, the Earth's earliest documented sedimentary phosphates, one of the greatest accumulations of organic matter (the Shunga Event) and generation of the Earth's earliest supergiant petroleum deposit. The volume highlights the potential of the FAR-DEEP core archive for future research of the Great Oxidation Event and the biogeochemical cycles operating during that time. 
Welcome to the illustrative journey through one of the most exciting periods of planet Earth!

Part V FAR-DEEP Core Archive and Database.- Part VI FAR-DEEP Core Descriptions and Rock Atlas.

Establishment of a well-characterized, well-dated and well-archived succession of rocks for the period of 2500-2000 Ma

Documentation of the changes in the biosphere and the geosphere associated with the rise in atmospheric oxygen

Development of a self-consistent model to explain the genesis and timing of the establishment of the aerobic Earth System

Includes supplementary material: sn.pub/extras