RF Microelectronics (2nd Ed.)

Author:

Language: English

125.73 €

In Print (Delivery period: 14 days).

Add to cartAdd to cart
Publication date:
960 p. · 20.9x25.4 cm · Hardback

The Acclaimed RF Microelectronics Best-Seller, Expanded and Updated for the Newest Architectures, Circuits, and Devices

Wireless communication has become almost as ubiquitous as electricity, but RF design continues to challenge engineers and researchers. In the 15 years since the first edition of this classic text, the demand for higher performance has led to an explosive growth of RF design techniques. In RF Microelectronics, Second Edition, Behzad Razavi systematically teaches the fundamentals as well as the state-of-the-art developments in the analysis and design of RF circuits and transceivers.

Razavi has written the second edition to reflect today?s RF microelectronics, covering key topics in far greater detail. At nearly three times the length of the first edition, the second edition is an indispensable tome for both students and practicing engineers. With his lucid prose, Razavi now

  • Offers a stronger tutorial focus along with hundreds of examples and problems
  • Teaches design as well as analysis with the aid of step-by-step design procedures and a chapter dedicated to the design of a dual-band WiFi transceiver
  • Describes new design paradigms and analysis techniques for circuits such as low-noise amplifiers, mixers, oscillators, and frequency dividers

This edition?s extensive coverage includes brand new chapters on mixers, passive devices, integer-N synthesizers, and fractional-N synthesizers. Razavi?s teachings culminate in a new chapter that begins with WiFi?s radio specifications and, step by step, designs the transceiver at the transistor level.

Coverage includes

  • Core RF principles, including noise and nonlinearity, with ties to analog design, microwave theory, and communication systems
  • An intuitive treatment of modulation theory and wireless standards from the standpoint of the RF IC designer
  • Transceiver architectures such as heterodyne, sliding-IF, directconversion, image-reject, and low-IF topologies.
  • Low-noise amplifiers, including cascode common-gate and commonsource topologies, noise-cancelling schemes, and reactance-cancelling configurations
  • Passive and active mixers, including their gain and noise analysis and new mixer topologies
  • Voltage-controlled oscillators, phase noise mechanisms, and various VCO topologies dealing with noisepower-tuning trade-offs
  • All-new coverage of passive devices, such as integrated inductors, MOS varactors, and transformers
  • A chapter on the analysis and design of phase-locked loops with emphasis on low phase noise and low spur levels
  • Two chapters on integer-N and fractional-N synthesizers, including the design of frequency dividers
  • Power amplifier principles and circuit topologies along with transmitter architectures, such as polar modulation and outphasing

Preface to the Second Edition xv

Preface to the First Edition xix

Acknowledgments xxi

About the Author xxiii

Chapter 1: Introduction to RF and Wireless Technology 1

1.1 A Wireless World 1

1.2 RF Design Is Challenging 3

1.3 The Big Picture 4

References 5

Chapter 2: Basic Concepts in RF Design 7

2.1 General Considerations 7

2.2 Effects of Nonlinearity 14

2.3 Noise 35

2.4 Sensitivity and Dynamic Range 58

2.5 Passive Impedance Transformation 62

2.6 Scattering Parameters 71

2.7 Analysis of Nonlinear Dynamic Systems 75

2.8 Volterra Series 77

References 86

Problems 86

Chapter 3: Communication Concepts 91

3.1 General Considerations 91

3.2 Analog Modulation 93

3.3 Digital Modulation 99

3.4 Spectral Regrowth 118

3.5 Mobile RF Communications 119

3.6 Multiple Access Techniques 123

3.7 Wireless Standards 130

3.8 Appendix I: Differential Phase Shift Keying 151

References 152

Problems 152

Chapter 4: Transceiver Architectures 155

4.1 General Considerations 155

4.2 Receiver Architectures 160

4.3 Transmitter Architectures 226

4.4 OOK Transceivers 248

References 249

Problems 250

Chapter 5: Low-Noise Amplifiers 255

5.1 General Considerations 255

5.2 Problem of Input Matching 263

5.3 LNA Topologies 266

5.4 Gain Switching 305

5.5 Band Switching 312

5.6 High-IP2 LNAs 313

5.7 Nonlinearity Calculations 325

References 333

Problems 333

Chapter 6: Mixers 337

6.1 General Considerations 337

6.2 Passive Downconversion Mixers 350

6.3 Active Downconversion Mixers 368

6.4 Improved Mixer Topologies 393

6.5 Upconversion Mixers 408

References 424

Problems 425

Chapter 7: Passive Devices 429

7.1 General Considerations 429

7.2 Inductors 431

7.3 Transformers 470

7.4 Transmission Lines 476

7.4.1 T-Line Structures 478

7.5 Varactors 483

7.6 Constant Capacitors 490

References 495

Problems 496

Chapter 8: Oscillators 497

8.1 Performance Parameters 497

8.2 Basic Principles 501

8.3 Cross-Coupled Oscillator 511

8.4 Three-Point Oscillators 517

8.5 Voltage-Controlled Oscillators 518

8.6 LC VCOs with Wide Tuning Range 524

8.7 Phase Noise 536

8.8 Design Procedure 571

8.8.1 Low-Noise VCOs 573

8.9 LO Interface 575

8.10 Mathematical Model of VCOs 577

8.11 Quadrature Oscillators 581

8.12 Appendix I: Simulation of Quadrature Oscillators 592

References 593

Problems 594

Chapter 9: Phase-Locked Loops 597

9.1 Basic Concepts 597

9.2 Type-I PLLs 600

9.3 Type-II PLLs 611

9.4 PFD/CP Nonidealities 627

9.5 Phase Noise in PLLs 638

9.6 Loop Bandwidth 645

9.7 Design Procedure 646

9.8 Appendix I: Phase Margin of Type-II PLLs 647

References 651

Problems 652

Chapter 10: Integer-N Frequency Synthesizers 655

10.1 General Considerations 655

10.2 Basic Integer-N Synthesizer 659

10.3 Settling Behavior 661

10.4 Spur Reduction Techniques 664

10.5 PLL-Based Modulation 667

10.6 Divider Design 673

References 712

Problems 713

Chapter 11: Fractional-N Synthesizers 715

11.1 Basic Concepts 715

11.2 Randomization and Noise Shaping 718

11.3 Quantization Noise Reduction Techniques 738

11.4 Appendix I: Spectrum of Quantization Noise 748

References 749

Problems 749

Chapter 12: Power Amplifiers 751

12.1 General Considerations 751

12.2 Classification of Power Amplifiers 760

12.3 High-Efficiency Power Amplifiers 770

12.4 Cascode Output Stages 776

12.5 Large-Signal Impedance Matching 780

12.6 Basic Linearization Techniques 782

12.7 Polar Modulation 790

12.8 Outphasing 802

12.9 Doherty Power Amplifier 811

12.10 Design Examples 814

References 830

Problems 831

Chapter 13: Transceiver Design Example 833

13.1 System-Level Considerations 833

13.2 Receiver Design 848

13.3 TX Design 861

13.4 Synthesizer Design 869

References 886

Problems 886

Index 889

Behzad Razavi, Professor of Electrical Engineering at UCLA, leads the Communication Circuits Laboratory (CCL). Emphasizing the use of mainstream CMOS technologies, CCL's research seeks and exploits new devices, circuits, and architectures to push the performance envelope. Razavi holds a BSEE from Sharif University of Technology and MSEE and PhDEE degrees from Stanford. He was with ATT Bell Laboratories and HP Labs until 1996. An IEEE Distinguished Lecturer and IEEE Fellow, his books include Design of Analog CMOS Integrated Circuits, Design of Integrated Circuits for Optical Communications, and Fundamentals of Microelectronics.

  • The field's classic, now with more thorough treatment of all key topics in RF circuit/system analysis and design
  • Walks step-by-step from specs to practical solutions
  • Complete transceiver examples illuminate the intimate interplay between circuit and system design
  • New chapters: integrated inductors/varactors; phase-locked loops; millimeter-wave techniques; and more