Ripples in Mathematics, 2001
The Discrete Wavelet Transform

Authors:

Language: English

Approximative price 79.11 €

Replenishment in progress

Add to cartAdd to cart
Ripples in Mathematics
Publication date:
246 p. · 15.5x23.5 cm · Paperback

73.84 €

Subject to availability at the publisher.

Add to cartAdd to cart
Ripples in mathematics - the discrete wavelet transform (POD)
Publication date:
246 p. · 15.5x23.5 cm · Paperback

This introduction to the discrete wavelet transform and its applications is based on a novel approach to discrete wavelets called lifting. After an elementary introduction, connections of filter theory are presented, and wavelet packet transforms are defined. The time-frequency plane is used for interpretation of signals, problems with finite length signals are detailed, and MATLAB is used for examples and implementation of transforms.

1. Introduction.- 1.1 Prerequisites.- 1.2 Guide to the Book.- 1.3 Background Information.- 2. A First Example.- 2.1 The Example.- 2.2 Generalizations.- Exercises.- 3. The Discrete Wavelet Transform via Lifting.- 3.1 The First Example Again.- 3.2 Definition of Lifting.- 3.3 A Second Example.- 3.4 Lifting in General.- 3.5 DWT in General.- 3.6 Further Examples.- Exercises.- 4. Analysis of Synthetic Signals.- 4.1 The Haar Transform.- 4.2 The CDF(2,2) Transform.- Exercises.- 5. Interpretation.- 5.1 The First Example.- 5.2 Further Results on the Haar Transform.- 5.3 Interpretation of General DWT.- Exercises.- 6. Two Dimensional Transforms.- 6.1 One Scale DWT in Two Dimensions.- 6.2 Interpretation and Examples.- 6.3 A 2D Transform Based on Lifting.- Exercises.- 7. Lifting and Filters I.- 7.1 Fourier Series and the z-Transform.- 7.2 Lifting in the z-Transform Representation.- 7.3 Two Channel Filter Banks.- 7.4 Orthonormal and Biorthogonal Bases.- 7.5 Two Channel Filter Banks in the Time Domain.- 7.6 Summary of Results on Lifting and Filters.- 7.7 Properties of Orthogonal Filters.- 7.8 Some Examples.- Exercises.- 8. Wavelet Packets.- 8.1 From Wavelets to Wavelet Packets.- 8.2 Choice of Basis.- 8.3 Cost Functions.- Exercises.- 9. The Time-Frequency Plane.- 9.1 Sampling and Frequency Contents.- 9.2 Definition of the Time-Frequency Plane.- 9.3 Wavelet Packets and Frequency Contents.- 9.4 More about Time-Frequency Planes.- 9.5 More Fourier Analysis. The Spectrogram.- Exercises.- 10. Finite Signals.- 10.1 The Extent of the Boundary Problem.- 10.2 DWT in Matrix Form.- 10.3 Gram-Schmidt Boundary Filters.- 10.4 Periodization.- 10.5 Moment Preserving Boundary Filters.- Exercises.- 11. Implementation.- 11.1 Introduction to Software.- 11.2 Implementing the Haar Transform Through Lifting.- 11.3 Implementing the DWT Through Lifting.- 11.4 The Real Time Method.- 11.5 Filter Bank Implementation.- 11.6 Construction of Boundary Filters.- 11.7 Wavelet Packet Decomposition.- 11.8 Wavelet Packet Bases.- 11.9 Cost Functions.- Exercises.- 12. Lifting and Filters II.- 12.1 The Three Basic Representations.- 12.2 From Matrix to Equation Form.- 12.3 From Equation to Filter Form.- 12.4 From Filters to Lifting Steps.- 12.5 Factoring Daubechies 4 into Lifting Steps.- 12.6 Factorizing Coiflet 12 into Lifting Steps.- Exercises.- 13. Wavelets in Matlab.- 13.1 Multiresolution Analysis.- 13.2 Frequency Properties of the Wavelet Transform.- 13.3 Wavelet Packets Used for Denoising.- 13.4 Best Basis Algorithm.- 13.5 Some Commands in Uvi_Wave.- Exercises.- 14. Applications and Outlook.- 14.1 Applications.- 14.2 Outlook.- 14.3 Some Web Sites.- References.

Based on a novel approach to discrete wavelets called lifting

Elementary introduction

Problems with finite length signals are treated in detail

MATLAB is used as the computational environment for examples and implementations

Includes supplementary material: sn.pub/extras