Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex
FRANCE

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02


Url canonique : www.lavoisier.fr/livre/autre/superconductivity/descriptif_4257099
Url courte ou permalien : www.lavoisier.fr/livre/notice.asp?ouvrage=4257099

Superconductivity, 1st ed. 2020 From Materials Science to Practical Applications

Langue : Anglais

Coordonnateurs : Mele Paolo, Prassides Kosmas, Tarantini Chiara, Palau Anna, Badica Petre, Jha Alok K., Endo Tamio

Couverture de l’ouvrage Superconductivity

This book provides readers with a comprehensive overview of the science of superconducting materials. It serves as a fundamental information source on the actual techniques and methodologies involved in superconducting materials growth, characterization and processing. This book includes coverage of several categories of medium and high-temperature superconducting materials: cuprate oxides, borides, and iron-based chalcogenides and pnictides.  

  • Provides a single-source reference on superconducting materials growth, characterization and processing;
  • Bridges the gap between materials science and applications of superconductors;
  • Discusses several categories of superconducting materials such as cuprate oxides, borides, and iron-based chalcogenides and pnictides;
  • Covers synthesis, characterization, and processing of superconducting materials, as well as the nanoengineering approach to tailor the properties of the used materials at the nanoscale level.

Targeted selection and characterisation of contemporary HTS wires for specific applications.- Pinning efficiency of artificial pinning centers in superconductor nanocomposite films.- Control of vortex pinning in YBCO thin films by incorporating APCs through surface modified target approach.- Progress in thick film 2G-HTS development.- Superconducting YBa2Cu3O7-δ Nanocomposite Films Using Preformed ZrO2 Nanocrystals via Chemical Solution Deposition.- High vortex activation energies in the AC magnetic response of superconductors close to the DC irreversibility line.- An atomic-scale perspective of the challenging microstructure of YBa2Cu3O7-x thin films.- Growth, properties, and device fabrication of iron-based superconductor thin-films.- Future potentials of new high Tc iron based superconductors.- Grain boundaries in Fe-based superconductors.- Control of the critical current density through microstructural design by Ho2O3 and Te co-addition into MgB2 processed by ex situ spark plasma sintering.- Superconductivity in the two dimensional electron gas at transition metal oxide interfaces.- Prospects of superconducting magnet technology in the medical field: a new paradigm on the horizon?.

Paolo Mele is currently Professor at SIT Research laboratories, Shibaura Institute of Technology, Tokyo, Japan.. He obtained a Master degree in Chemistry and Ph.D. in Chemical Sciences at Genova University (Italy). In 2003 he moved to ISTEC-SRL in Tokyo to study melt-textured ceramic superconductors. Then he worked as postdoc at Kyoto University (JSPS fellowship) from 2004 to 2007, at Kyushu Institute of Technology (JST fellowship) from 2007 to 2011, at Hiroshima University (as lecturer) from 2011 to 2014 and at Muroran Institute of Technology (as associate professor) from 2015 to 2018 before reaching his current position. His research interests include materials for energy and sustainable development (superconductors and thermoelectrics); fabrication and characterization of thin films of oxides, ceramics and metals; study of the effect of nanostructuration on the physical properties; thermal transport; and vortex matter. He is the author of more than 100 papers in international scientific journals and four book chapters, and has two patents and has contributed to hundreds of communications at international conferences. He edited three books for Springer.

Kosmas Prassides was born in Kavala, Greece and read Chemistry at Oxford University where he also completed his doctoral research on inorganic mixed valency compounds under the supervision of Professor P. Day FRS. He was then the Drapers' Research Fellow at St. Anne's College, Oxford, working closely with Professor P. N. Schatz (University of Virginia) on the development of the PKS theoretical model for mixed valency systems. Following a spell as Assistant Professor of Chemistry at the University of Crete, Greece, he returned in 1989 to the UK at the University of Sussex where he remained until 2004 and he was successively Lecturer, Reader and Professor of Solid State Chemistry. In 2005, he took up a Chair in Materials Chemistry at the Department of Chemistry, Durham University. In October20

Provides a single-source reference on superconducting materials growth, characterization and processing Bridges the gap between materials science and applications of superconductors; Discusses several categories of superconducting materials such as cuprate oxides, borides, and iron-based chalcogenides and pnictides Covers synthesis, characterization, and processing of superconducting materials, as well as the nanoengineering approach to tailor the properties of the used materials at the nanoscale level

Date de parution :

Ouvrage de 369 p.

15.5x23.5 cm

Disponible chez l'éditeur (délai d'approvisionnement : 15 jours).

137,14 €

Ajouter au panier

Date de parution :

Ouvrage de 369 p.

15.5x23.5 cm

Disponible chez l'éditeur (délai d'approvisionnement : 15 jours).

137,14 €

Ajouter au panier