Thermoelectric Power in Nanostructured Materials, 2010
Strong Magnetic Fields

Springer Series in Materials Science Series, Vol. 137

Authors:

Language: English

158.24 €

In Print (Delivery period: 15 days).

Add to cartAdd to cart
Thermoelectric Power in Nanostructured Materials
Publication date:
393 p. · 15.5x23.5 cm · Paperback

Approximative price 158.24 €

In Print (Delivery period: 15 days).

Add to cartAdd to cart
Thermoelectric power in nanostructured materials strong magnetic fields (Springer series in materials science, vol. 137)
Publication date:
393 p. · 15.5x23.5 cm · Hardback
This is the first monograph which solely investigates the thermoelectric power in nanostrcutured materials under strong magnetic field (TPSM) in quantum confined nonlinear optical, III-V, II-VI, n-GaP, n-Ge, Te, Graphite, PtSb2, zerogap, II-V, Gallium Antimonide, stressed materials, Bismuth, IV-VI, lead germanium telluride, Zinc and Cadmium diphosphides, Bi2Te3, Antimony and carbon nanotubes, III-V, II-VI, IV-VI and HgTe/CdTe superlattices with graded interfaces and effective mass superlattices under magnetic quantization, the quantum wires and dots of the aforementiond superlattices by formulating the approprate respective carrier energy spectra which in turn control the quantum processes in quantum effect devices. The TPSM in macro, quantum wire and quantum dot superlattices of optoelectronic materials in the presence of external photo-excitation have also been studied on the basis of newly formulated electron dispersion laws. This monograph contains 150 open research problems which form the very core and are useful for PhD students and researchers in the fields of materials science, solid-state sciences, computational and theoretical nanoscience and technology, nanostructured thermodynamics and condensed matter physics in general in addition to the graduate courses on modern thermoelectric materials in various academic departments of many institutes and universities.
Thermoelectric power under large magnetic field in quantum confined materials.- Thermoelectric Power in Quantum Dots Under Large Magnetic Field.- Thermoelectric Power in Ultrathin Films and Quantum Wires Under Large Magnetic Field.- Thermoelectric Power in Quantum Dot Superlattices Under Large Magnetic Field.- Thermoelectric Power in Quantum Wire Superlattices Under Large Magnetic Field.- Thermoelectric power under magnetic quantization in macro and micro electronic materials.- Thermoelectric Power in Macroelectronic Materials Under Magnetic Quantization.- Thermoelectric Power in Superlattices Under Magnetic Quantization.- Thermoelectric Power in Ultrathin Films Under Magnetic Quantization.- Thermoelectric power under large magnetic field in quantum confined optoelectronic materials in the presence of light waves.- Optothermoelectric Power in Ultrathin Films and Quantum Wires of Optoelectronic Materials Under Large Magnetic Field.- Optothermoelectric Power in Quantum Dots of Optoelectronic Materials Under Large Magnetic Field.- Optothermoelectric Power in Quantum-Confined Semiconductor Superlattices of Optoelectronic Materials Under Large Magnetic Field.- Thermoelectric power under magnetic quantization in macro and micro optoelectronic materials in the presence of light waves.- Optothermoelectric Power in Macro-Optoelectronic Materials Under Magnetic Quantization.- Optothermoelectric Power in Ultrathin Films of Optoelectronic Materials Under Magnetic Quantization.- Optothermoelectric Power in Superlattices of Optoelectronic Materials Under Magnetic Quantization.- Applications and Brief Review of Experimental Results.- Conclusion and Future Research.
Professor K. P. Ghatak is the First Recipient of the Degree of Doctor of Engineering of Jadavpur University in 1991 since the University inception in 1955 and in the same year he received the prestigious Indian National Science Academy award. He joined as Lecturer in the Institute of Radio Physics and Electronics of the University of Calcutta in 1983, Reader in the Department of Electronics and Telecommunication of Jadavpur University in 1987 and Professor in the Department of Electronic Science of the University of Calcutta in 1994 respectively. His present research interest is nanostructured science and technology. He is the principal co-author of more than 200 research papers on Semiconductor and Nanoscience in eminent peer-reviewed International Journals and more than 50 research papers in the Proceedings of the International Conferences held in USA and many of his papers are being cited many times. Professor Ghatak is the invited Speaker of SPIE, MRS, etc. and is the referee of different eminent Journals. He is the supervisor of more than 34 Ph.D candidates among which 24 have already been awarded their respective Ph.D degrees, 6 are working at present and 4 are writing their respective Ph.D. thesis in various aspects of materials and nanoscience and many of them are working as Professor, Reader and Lecturer in different Universities. He is the principal co-author of the two research monographs entitled "Einstein Relation in Compound Semiconductors and Their Nanostructures" Springer Series in Materials Science, Vol. 116, ISBN 978-3-540-79556-8 which is the first book on Einstein relation and contains many open research problems and "Photoemission from Optoelectronic materials and their nanostructures", which will be published from Springer, USA in 2009 and presently in the press as the first book solely devoted to Photoemission from nanostructured optoelectronic materials. The All Indian Council For Technical Education has selected the first Research & Dev
First book on thermoelectric nanomaterials in strong magnetic fields Combines the physics of nanomaterials, thermoelectrics and magnetism Reference for researchers Study text for students, including 150 problems