Tree Rings and Natural Hazards, 2010
A State-of-Art

Advances in Global Change Research Series, Vol. 41

Coordinators: Stoffel Markus, Bollschweiler Michelle, Butler David R., Luckman Brian H.

Language: English

210.99 €

In Print (Delivery period: 15 days).

Add to cartAdd to cart
Tree Rings and Natural Hazards
Publication date:
505 p. · 15.5x23.5 cm · Paperback

Approximative price 210.99 €

In Print (Delivery period: 15 days).

Add to cartAdd to cart
Tree rings & natural hazards: a stateof-art (Advances in global change research, Vol. 41)
Publication date:
505 p. · 15.5x23.5 cm · Hardback
Dendrogeomorphology Beginnings and Futures: A Personal Reminiscence My early forays into dendrogeomorphology occurred long before I even knew what that word meant. I was working as a young geoscientist in the 1960s and early 1970s on a problem with slope movements and deformed vegetation. At the same time, unknown to me, Jouko Alestalo in Finland was doing something similar. Both of us had seen that trees which produced annual growth rings were reacting to g- morphic processes resulting in changes in their internal and external growth p- terns. Dendroclimatology was an already well established field, but the reactions of trees to other environmental processes were far less well understood in the 1960s. It was Alestalo (1971) who first used the term, dendrogeomorphology. In the early 1970s, I could see that active slope-movement processes were affecting the growth of trees in diverse ways at certain localities. I wanted to learn more about those processes and try to extract a long-term chronology of movement from the highly diverse ring patterns.
Tree Rings and Natural Hazards – An Introduction.- Tree Rings and Natural Hazards: An Introduction.- Snow Avalanches.- Dendrogeomorphology and Snow Avalanche Research.- Tree-Ring Dating of Snow Avalanches in Glacier National Park, Montana, USA.- Tracking Past Snow Avalanches in the SE Pyrenees.- Tree-Ring Based Reconstruction of Past Snow Avalanche Events and Risk Assessment in Northern Gaspé Peninsula (Québec, Canada).- Using Dendrochronology to Validate Numerical Simulations of Snow Avalanches in the Patagonian Andes.- Landslides.- Dating Landslides with Trees.- Dendrogeomorphological Analysis of a Landslide near Lago, Calabria (Italy).- Tree-Ring Analysis and Rockfall Avalanches: The Use of Weighted Samples.- Age of Landslides Along the Grande Rivière de la Baleine Estuary, Eastern Coast of Hudson Bay, Quebec (Canada).- Rainfall Up, Mountain Down?.- Rockfall.- Rockfalls and Their Hazard.- Assessing Rockfall Activity in a Mountain Forest – Implications for Hazard Assessment.- Tree-Ring Based Rockfall Reconstruction and Accuracy Assessment of a 3D Rockfall Model.- Assessment of the Rockfall Frequency for Hazard Analysis at Solà d’Andorra (Eastern Pyrenees).- Reconstruction and Spatial Analysis of Rockfall Frequency and Bounce Heights Derived from Tree Rings.- Debris Flows.- State of the Art in Debris-Flow Research: The Role of Dendrochronology.- Using Event and Minimum Age Dating for the Assessment of Hazards on a Debris-Flow Cone.- Dendrogeomorphic Applications to Debris Flows in Glacier National Park, Montana USA.- Frequency–Magnitude Relationships, Seasonality and Spread of Debris Flows on a Forested Cone.- High-Precision Dating of Debris-Flow Events Within the Growing Season.- Flooding.- Tree Rings as Paleoflood and Paleostage Indicators.- The Effectsof Hydroelectric Flooding on a Reservoir’s Peripheral Forests and Newly Created Forested Islands.- Spring Water Levels Reconstructed from Ice-Scarred Trees and Cross-Sectional Area of the Earlywood Vessels in Tree Rings from Eastern Boreal Canada.- A 100-Year History of Floods Determined from Tree Rings in a Small Mountain Stream in the Tatra Mountains, Poland.- Dendrohydrology and Extreme Floods Along the Red River, Canada.- Meteorological Hazards.- Weather and Climate Extremes: Where Can Dendrochronology Help?.- Dendrotempestology and the Isotopic Record of Tropical Cyclones in Tree Rings of the Southeastern United States.- Dendrochronological Responses to a Tornado.- Dendroecology of Hurricanes and the Potential for Isotopic Reconstructions in Southeastern Texas.- Wildfires.- Wildfire Hazard and the Role of Tree-Ring Research.- Mesoscale Disturbance and Ecological Response to Decadal Climatic Variability in the American Southwest.- Wildfire Risk and Ecological Restoration in Mixed-Severity Fire Regimes.- Wildfire Ecology and Management at Grand Canyon, USA: Tree-Ring Applications in Forest Fire History and Modeling.- Wildfire Risk and Hazard in Northern Patagonia, Argentina.- Earthquakes.- Tree Rings and Earthquakes.- Application of Tree-Ring Analysis to Paleoseismology.- Tree-Ring Abnormality Caused by Large Earthquake: An Example From the 1931 M 8.0 Fuyun Earthquake.- Tree-Ring Dated Landslide Movements and Seismic Events in Southwestern Montana, USA.- Seismic Damage in Conifers from Olympic and Yellowstone National Parks, United States.- Volcanic Activity.- Studying Past Volcanic Activity with Tree Rings.- Tree-Ring Evidence for the 1913 Eruption of Volcán de Fuego de Colima, Mexico.- Dendrochemical Evidence of the 1781 Eruption of Mount Hood, Oregon.-Volcanic Eruptions over the Last 5,000 Years from High Elevation Tree-Ring Widths and Frost Rings.- Unknown Eruption of Shiveluch Volcano (Kamchatka, Russia) Around AD 1756 Identified by Dendrochronology.- Late Eighteenth Century Old Maid Eruption and Lahars at Mount Hood, Oregon (USA) Dated with Tree Rings and Historical Observations.- Overall Conclusion and Outlook.- Whither Dendrogeomorphology?.- Erratum to: Chapter 40 Seismic Damage in Conifers from Olympic and Yellowstone Parks, United States.
State-of-the-art book on tree-ring dating of natural hazards First extensive compilation of classical and unpublished studies in hazard related tree-ring research Outlines and demonstrates practical applications of tree rings in natural hazards study Potential utility in specialist graduate and undergraduate and technical courses