Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex
FRANCE

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02


Url canonique : www.lavoisier.fr/livre/autre/ultra-precision-high-performance-cutting/descriptif_4555444
Url courte ou permalien : www.lavoisier.fr/livre/notice.asp?ouvrage=4555444

Ultra-precision High Performance Cutting, 1st ed. 2022 Report of DFG Research Unit FOR 1845 Lecture Notes in Production Engineering Series

Langue : Anglais

Coordonnateurs : Brinksmeier Ekkard, Schönemann Lars

Couverture de l’ouvrage Ultra-precision High Performance Cutting

This book contains the research report of the DFG Research Unit FOR 1845 (2014-2020) of the Universities of Bremen and Hannover. The thematic focus lies on speeding up ultra-precision machining technology by following a holistic approach to high-performance cutting. This includes ultra-precision milling at high spindle speeds (>10000 rpm), precision tool setting mechanisms for multi-cutting-edge diamond milling tools, magnetic levitation technology for high velocity feed axes, and dedicated control strategies for error identification and compensation at high speeds. Furthermore, automation and measurement aspects of the machine setup process especially for precision balancing of the spindle rotors are presented. Finally, it is demonstrated that how the developed technologies may be integrated into a common machine tool setup.

 

The target audience primarily comprises research experts and practitioners in production engineering, but the book may also be ofinterest to graduate students alike.

Chapter 1. Introduction to Ultra-Precision High Performance Cutting.-Chapter 2. Diamond milling with multiple cutting edges.- Chapter 3. Ultra-precision high speed cutting.-Chapter 4. Electromagnetic ultra-precision linear guide.-Chapter 5. Spindle balancing for ultra-precision high speed cutting.-Chapter 6. Ultra precision high performance axis control.-Chapter7. Achievements and future perspectives for ultra-precision high performance cutting.

Ekkard Brinksmeier is Speaker of the DFG Research Unit FOR 1845. From 1992 until his retirement in 2019, he was Professor for manufacturing technology at the University of Bremen, Head of the Laboratory for Precision Machining LFM, and Director of the Leibniz Institute for Materials Engineering. Prior to that, he studied mechanical engineering at the University of Hannover, where he obtained his diploma, doctorate, and post-doctoral lecturer qualification.

Ekkard Brinksmeier is Honorary Fellow and Past President of the International Academy for Production Engineering CIRP, Fellow and Past President of the European Society for Precision Engineering and Nanotechnology euspen, and Fellow of the Society of Manufacturing Engineers SME.

Ekkard Brinksmeier is a world-renowned expert in the field of ultra-precision machining technology and received numerous awards for his work including the Gottfried Wilhelm Leibniz Prize from the DFG (1999), the Frederick W. Taylor ResearchMedal from the Society of Manufacturing Engineers (2011), and the euspen (2015) as well as the ASPE (2017) lifetime achievement awards. In 2012, he received an honorary doctorate from the RWTH Aachen and in 2017 an honorary professorship from the University Tianjin.

Lars Schönemann is Coordinator of the DFG Research Unit FOR 1845 and Junior Research Group Leader on “Economic Ultra-Precision Machining – speedUP” at the Leibniz Institute for Materials Engineering in Bremen, Germany.

He graduated from the University of Bremen with a Bachelor’s degree in Systems Engineering in 2006 and a Master’s degree in the same field in 2008. Since 2007, he is working as Research Engineer at the Laboratory for Precision Machining LFM, a department of the Leibniz IWT. He obtained his doctorate (Dr.-Ing.) in 2014 for his work on Diamond Micro Chiseling of prismatic optical microstructures.

His research focuses on ultra-precision machining processes, especially for generating functional sur

Shows how diamond milling may be extended to new material classes by applying high-speed cutting Introduces the magnetic levitation technology as a basis for high-performance feed axes Shows new solutions for ultra-precision machine controls at high machining speeds

Date de parution :

Ouvrage de 174 p.

15.5x23.5 cm

Disponible chez l'éditeur (délai d'approvisionnement : 15 jours).

158,24 €

Ajouter au panier

Date de parution :

Ouvrage de 174 p.

15.5x23.5 cm

Disponible chez l'éditeur (délai d'approvisionnement : 15 jours).

158,24 €

Ajouter au panier