Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex
FRANCE

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02


Url canonique : www.lavoisier.fr/livre/autre/wave-propagation-in-complex-media/papanicolau/descriptif_1277685
Url courte ou permalien : www.lavoisier.fr/livre/notice.asp?ouvrage=1277685

Wave Propagation in Complex Media, Softcover reprint of the original 1st ed. 1998 The IMA Volumes in Mathematics and its Applications Series, Vol. 96

Langue : Anglais

Coordonnateur : Papanicolaou George

Couverture de l’ouvrage Wave Propagation in Complex Media
This IMA Volume in Mathematics and its Applications WAVE PROPAGATION IN COMPLEX MEDIA is based on the proceedings of two workshops: ? Wavelets, multigrid and other fast algorithms (multipole, FFT) and their use in wave propagation and ? Waves in random and other complex media. Both workshops were integral parts of the 1994-1995 IMA program on "Waves and Scattering." We would like to thank Gregory Beylkin, Robert Burridge, Ingrid Daubechies, Leonid Pastur, and George Papanicolaou for their excellent work as organizers of these meetings. We also take this opportunity to thank the National Science Foun­ dation (NSF), the Army Research Office (ARO, and the Office of Naval Research (ONR), whose financial support made these workshops possible. A vner Friedman Robert Gulliver v PREFACE During the last few years the numerical techniques for the solution of elliptic problems, in potential theory for example, have been drastically improved. Several so-called fast methods have been developed which re­ duce the required computing time many orders of magnitude over that of classical algorithms. The new methods include multigrid, fast Fourier transforms, multi pole methods and wavelet techniques. Wavelets have re­ cently been developed into a very useful tool in signal processing, the solu­ tion of integral equation, etc. Wavelet techniques should be quite useful in many wave propagation problems, especially in inhomogeneous and nonlin­ ear media where special features of the solution such as singularities might be tracked efficiently.
Fast algorithms for solving electromagnetic scattering problems.- 2d photonic crystals with cubic structure: asymptotic analysis.- On waves in random media in the diffusion-approximation regime.- Coherent effects in scattering from bounded random systems with discrete spectrum.- The interaction of microwaves with sea ice.- Electron in two-dimensional system with point scatterers and magnetic field.- On the propagation properties of surface waves.- Green’s function, lattice sums and Rayleigh’s identity for a dynamic scattering problem.- Study of seismogram envelopes based on the energy transport theory.- The panel clustering method in 3-d bem.- Propagation of electromagnetic waves in two-dimensional disordered systems.- Reciprocity and coherent backscattering of light.- Spatio-temporal distribution of seismic power for a random absorptive slab in a half space.
This volume contains the discussions of two workshops: one devoted to wavelets, multigrid and other fast algorithms (multipole, FFT) and their use in wave propagation, and another devoted to waves in random and other complex media.

Date de parution :

Ouvrage de 295 p.

15.5x23.5 cm

Disponible chez l'éditeur (délai d'approvisionnement : 15 jours).

52,74 €

Ajouter au panier

Ces ouvrages sont susceptibles de vous intéresser