Springer Series in Light Scattering, 1st ed. 2021
Volume 6: Radiative Transfer, Light Scattering, and Remote Sensing

Springer Series in Light Scattering Series

Coordinator: Kokhanovsky Alexander

Language: English

137.14 €

In Print (Delivery period: 15 days).

Add to cartAdd to cart
Springer Series in Light Scattering
Publication date:
Support: Print on demand

137.14 €

In Print (Delivery period: 15 days).

Add to cartAdd to cart
Springer Series in Light Scattering
Publication date:
Support: Print on demand

This book is aimed at description of recent progress in radiative transfer, atmospheric remote sensing, snow optics,  and light scattering. Light scattering/ radiative transfer and  atmospheric optics research community will greatly benefit from the publication of this book.

Stereological methods in the theory of light scattering by nonspherical particles.- Approximate radiative transfer theory.- Fast radiative transfer equation solution technique.- Inverse problems of atmospheric remote sensing.- The spectral problem in polarimetry.

Alexander Kokhanovsky graduated in 1983 in Theoretical Physics (The Department of Physics, Belarusian State University, Minsk, Belarus); the main topics of his thesis were the solution of the vector radiative transfer equation for the case of chiral light scattering media. Particular attention was given to the study of the properties of radiation in deep layers of  turbid media. The phase and extinction matrices have been calculated using the Maxwell theory for chiral spheres.  

In 1983, Dr. Kokhanovsky joined the Laboratory of Light Scattering Media of the Institute of Physics of National Academy of Sciences of Belarus as Junior Research Scientist. In 1986, he started a Ph.D. course in Optics at the Institute of Physics (National Academy of Sciences of Belarus, Minsk, Belarus). During the Ph.D., his focus rapidly moved to studies of Atmospheric Optics, in particular to the investigation of atmospheric aerosol and clouds using optical methods. As a Ph.D. student, he was responsible for several projects related to studies of light propagation and image transfer through atmosphere and ocean. The optical properties of whitecaps have been studied as well.  

In December 1991, he was awarded the Ph.D. degree in Optics for the thesis “Optical Properties of Atmospheric Aerosols and Foams”. Simple analytical equations have been proposed for radiative characteristics of coarse-mode aerosols, water clouds, and foams in terms of the parameters of microstructure such as size distribution, shape, internal structure, and chemical composition of scatterers. 

After the Ph.D. in defense, Dr. Kokhanovsky has focused his research on the development of fast algorithms to retrieve cloud properties using satellite observations. He also studied several inverse problems of light scattering media optics including the diffuse-wave spectroscopy and laser diffraction spectrometry. In 1994, Dr. Kokhanovsky w

Includes tips on how to approach the solution of a number of practical problems related to light scattering Contains a special chapter on atmospheric remote sensing which helps the reader to define and solve numerous atmospheric scattering problems Provides numerous step-by-step tutorials which help the reader to learn quickly various aspects of theoretical and experimental light scattering optics