Thermoacoustics (2nd Ed., 2nd ed. 2017)
A Unifying Perspective for Some Engines and Refrigerators

Author:

Language: English

Approximative price 68.56 €

In Print (Delivery period: 15 days).

Add to cartAdd to cart
Thermoacoustics
Publication date:
Support: Print on demand

94.94 €

In Print (Delivery period: 15 days).

Add to cartAdd to cart
Thermoacoustics
Publication date:
Support: Print on demand

This updated new edition provides an introduction to the field of thermoacoustics. All of the key aspects of the topic are introduced, with the goal of helping the reader to acquire both an intuitive understanding and the ability to design hardware, build it, and assess its performance. Weaving together intuition, mathematics, and experimental results, this text equips readers with the tools to bridge the fields of thermodynamics and acoustics. At the same time, it remains firmly grounded in experimental results, basing its discussions on the distillation of a body of experiments spanning several decades and countries.

The book begins with detailed treatment of the fundamental physical laws that underlie thermoacoustics. It then goes on to discuss key concepts, including simple oscillations, waves, power, and efficiency. The remaining portions of the book delve into more advanced topics and address practical concerns in applications  chapters on hardware and

measurements. With its careful progression and end-of-chapter exercises, this book will appeal to graduate students in physics and engineering as well as researchers and practitioners in either acoustics or thermodynamics looking to explore the possibilities of thermoacoustics. This revised and expanded second edition has been updated with an eye to modern technology, including computer animations and DeltaEC examples.

Preface v
List of symbols viii
1 Introduction 1
1.1 Themes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Length scales . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Overview and examples . . . . . . . . . . . . . . . . . . . . . 8
1.3.1 Standing-wave heat engine . . . . . . . . . . . . . . . 9
1.3.2 Standing-wave refrigerator . . . . . . . . . . . . . . . . 14
1.3.3 Orifice pulse-tube refrigerator . . . . . . . . . . . . . . 17
1.3.4 Thermoacoustic-Stirling heat engine . . . . . . . . . . 22
1.4 Thermoacoustics and conventional technology . . . . . . . . . 25
1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2 Background 30
2.1 Laws of thermodynamics . . . . . . . . . . . . . . . . . . . . . 30
2.1.1 The first la
w . . . . . . . . . . . . . . . . . . . . . . . 30
2.1.2 The second law . . . . . . . . . . . . . . . . . . . . . . 34
2.2 Laws of fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.2.1 Continuity (mass) . . . . . . . . . . . . . . . . . . . . 39
2.2.2 Momentum . . . . . . . . . . . . . . . . . . . . . . . . 40
2.2.3 Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.2.4 Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.3 Ideal gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.3.1 Thermodynamic properties . . . . . . . . . . . . . . . 44
2.3.2 Transport properties . . . . . . . . . . . . . . . . . . . 47
2.3.3 Shortcuts . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.3.4 Mixtures . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.4 Some consequences of the laws . . . . . . . . . . . . . . . . .
48
2.4.1 Carnot's eficiency . . . . . . . . . . . . . . . . . . . . 48
2.4.2 Maxwell relations . . . . . . . . . . . . . . . . . . . . . 49
2.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3 Simple oscillations 55
3.1 The harmonic oscillator and complex notation . . . . . . . . . 55
3.2 Acoustic approximations to the laws of gases . . . . . . . . . 59
3.3 Some simple oscillations in gases . . . . . . . . . . . . . . . . 64
3.3.1 The gas spring . . . . . . . . . . . . . . . . . . . . . . 64
3.3.2 Simple sound waves . . . . . . . . . . . . . . . . . . . 66
3.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4 Waves 72
4.1 Lossless acoustics and ideal resonators . . . . . . . . . . . . . 72
4.2 Viscous and thermal effects in large channels . . . . . . . . . 79
4.2.1 Viscous resistance . . . . . .
. . . . . . . . . . . . . . 80
4.2.2 Thermal-relaxation conductance . . . . . . . . . . . . 85
4.3 Inviscid boundary-layer thermoacoustics . . . . . . . . . . . . 89
4.4 General thermoacoustics . . . . . . . . . . . . . . . . . . . . . 92
4.4.1 The math . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.4.2 The ideas . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5 Power 112
5.1 Acoustic power . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.1.1 Acoustic power dissipation with dTm/dx = 0 . . . . . 116
5.1.2 Acoustic power with zero viscosity . . . . . . . . . . . 119
5.2 Total power . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.2.1 Traveling waves . . . . . . . . . . . . . . . . . . . . . . 131
5.2.2 Standing waves . . . . . . . . . . . . . .
. . . . . . . . 132
5.3 Some calculation methods . . . . . . . . . . . . . . . . . . . . 133
5.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6 Efficiency . . . 144
6.1 Lost work and entropy generation . . . . . . . . . . . . . . . . 145
6.2 Exergy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
6.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
6.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
7 Beyond Rott's thermoacoustics 164
7.1 Tortuous porous media . . . . . . . . . . . . . . . . . . . . . . 167
7.2 Turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
7.2.1 Minor losses . . . . . . . . . . . . . . . . . . . . . . . . 177
7.3 Entrance effects and joining conditions .
. . . . . . . . . . . . 182
7.3.1 Entrance effects . . . . . . . . . . . . . . . . . . . . . . 182
7.3.2 Joining conditions . . . . . . . . . . . . . . . . . . . . 183
7.4 Mass streaming . . . . . . . . . . . . . . . . . . . . . . . . . . 190
7.4.1 Gedeon streaming ("dc flow") . . . . . . . . . . . . . . 193
7.4.2 Rayleigh streaming . . . . . . . . . . . . . . . . . . . . 197
7.4.3 Jet-driven streaming . . . . . . . . . . . . . . . . . . . 202
7.4.4 Streaming within a regenerator or stack . . . . . . . . 204
7.4.5 Deliberate streaming . . . . . . . . . . . . . . . . . . . 205
7.5 Harmonics and shocks . . . . . . . . . . . . . . . . . . . . . . 212
7.6 Dimensionless groups . . . . . . . . . . . . . . . . . . . . . . . 216
7.6.1 Insight . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
7.6.2 Empirical correlation . . . . . . . . . . . . . . . . . . . 218
7.6.3 Scale models . . . . . . . . . . . . . . . . . . . . . . . 219
7.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
8 Hardware . . . . . 223
8.1 Prelude: the gas itself . . . . . . . . . . . . . . . . . . . . . . 223
8.2 Stacks and regenerators . . . . . . . . . . . . . . . . . . . . . 224
8.2.1 Standing wave . . . . . . . . . . . . . . . . . . . . . . 225
8.2.2 Traveling wave . . . . . . . . . . . . . . . . . . . . . . 231
8.3 Heat exchangers . . . . . . . . . . . . . . . . . . . . . . . . . 233
8.3.1 Common arrangements . . . . . . . . . . . . . . . . . 233
8.3.2 Thermoacoustic choices . . . . . . . . . . . . . . . . . 234
8.4 Thermal buffer tubes, pulse tubes, and flow straighteners . . 238
8.5 Resonators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
8.5.1 Dissipation . . . . . . . . . . . . . . . . . . . . . . . . 239
8.5.2 Size, weight, and pressure-vessel safety . . . . . . . . . 241
8.5.3 Harmonic suppression . . . . . . . . . . . . . . . . . . 242
8.6 Electroacoustic power transducers . . . . . . . . . . . . . . . 243
8.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
9 Measurements . . . 252
9.1 Easy measurements . . . . . . . . . . . . . . . . . . . . . . . . 252
9.1.1 Pressures and frequency . . . . . . . . . . . . . . . . . 253
9.1.2 Mean temperature . . . . . . . . . . . . . . . . . . . . 255
9.2 Power measurements . . . . . . . . . . . . . . . . . . . . . . . 256
9.2.1 Acoustic power . . . . . . . . . . . . . . . . . . . . . . 256
9.2.2 Heat . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
9.3 Difficult measurements . . . . . . . . . . . . . . . . . . . . . . 262
9.4 Points of view . . . . . . . . . . . . . . . . . . . . . . .
. . . . 263
9.4.1 Natural dependence . . . . . . . . . . . . . . . . . . . 264
9.4.2 Evidence . . . . . . . . . . . . . . . . . . . . . . . . . 266
9.4.3 Performance . . . . . . . . . . . . . . . . . . . . . . . 268
9.4.4 A thermoacoustic perspective . . . . . . . . . . . . . . 271
9.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
A Common pitfalls 285
B DeltaEC files . . . 287
B.1 Standing-wave engine . . . . . . . . . . . . . . . . . . . . . . 287
B.2 Standing-wave refrigerator . . . . . . . . . . . . . . . . . . . . 290
B.3 Orifice pulse-tube refrigerator . . . . . . . . . . . . . . . . . . 292
B.4 Thermoacoustic-Stirling heat engine . . . . . . . . . . . . . . 295
Bibliography . . . 302
Author index . . . 313
Subject index . . . 316
Greg Swift received his PhD in physics at the University of California at Berkeley in 1980, and has worked in the Condensed Matter and Thermal Physics Group at Los Alamos National Laboratory (LANL) ever since.  He is a Fellow of the Acoustical Society of America, of the American Physical Society, and of LANL.  He received the Acoustical Society's Silver Medal in Physical Acoustics in 2000, an award that has been given, on average, only every three years.  He received the US Department of Energy's E.O. Lawrence Award in 2004, in the category of Environmental Science and Technology. The main focus of Greg's research has been the invention and development of novel energy-conversion technologies.  He enjoys the thermodynamics of heat engines and refrigerators, the thermodynamics of non-ideal-gas fluids, physical acoustics, hydrodynamics, and low-temperature physics.  He hopes that thermoacoustic engines and refrigerators will play a meaningful role in the energy economy of the 21st century. 

At Los Alamos, Greg has mentored two Master’s students, three Ph.D. students, and 13 postdocs, and enjoyed significant partnerships with ten corporate collaborators.  He is co-author (or, occasionally, sole author) of about 100 articles in refereed journals and conference proceedings. He is responsible for two dozen patents, and the thermoacoustics design and analysis software most commonly used worldwide—DeltaEC.

Contains access to computer animations (available as supplementary material for Chapter 1) and DeltaEC examples

Written by the undisputed leader in thermoacoustics

Represents a gateway into the field of thermoacoustics for engineers and acousticians alike

Bridges the fields of acoustics and thermodynamics, opening up new technological possibilities