High Voltage Engineering

Authors:

Language: English

262.97 €

In Print (Delivery period: 15 days).

Add to cartAdd to cart
High Voltage Engineering
Publication date:
Support: Print on demand

95.69 €

In Print (Delivery period: 14 days).

Add to cartAdd to cart
High Voltage Engineering
Publication date:
· 17.8x25.4 cm · Paperback

Inspired by a new revival of worldwide interest in extra-high-voltage (EHV) and ultra-high-voltage (UHV) transmission, High Voltage Engineering merges the latest research with the extensive experience of the best in the field to deliver a comprehensive treatment of electrical insulation systems for the next generation of utility engineers and electric power professionals. The book offers extensive coverage of the physical basis of high-voltage engineering, from insulation stress and strength to lightning attachment and protection and beyond.

Presenting information critical to the design, selection, testing, maintenance, and operation of a myriad of high-voltage power equipment, this must-have text:

  • Discusses power system overvoltages, electric field calculation, and statistical analysis of ionization and breakdown phenomena essential for proper planning and interpretation of high-voltage tests
  • Considers the breakdown of gases (SF6), liquids (insulating oil), solids, and composite materials, as well as the breakdown characteristics of long air gaps
  • Describes insulation systems currently used in high-voltage engineering, including air insulation and insulators in overhead power transmission lines, gas-insulated substation (GIS) and cables, oil-paper insulation in power transformers, paper-oil insulation in high-voltage cables, and polymer insulation in cables
  • Examines contemporary practices in insulation coordination in association with the International Electrotechnical Commission (IEC) definition and the latest standards
  • Explores high-voltage testing and measuring techniques, from generation of test voltages to digital measuring methods

With an emphasis on handling practical situations encountered in the operation of high-voltage power equipment, High Voltage Engineering provides readers with a detailed, real-world understanding of electrical insulation systems, including the various factors affecting?and the actual means of evaluating?insulation performance and their application in the establishment of technical specifications.

Insulation Stress: Power System Overvoltages.Electric Field Calculation. Statistical Analysis. Insulation Strength: Electric Breakdown of Gases. Breakdown Characteristics of Long Air Gaps. Electric Breakdown in Liquids. Electric Breakdown in Solids and Composite Materials. Applications: Overhead Lines.Lightning Protection.High-Voltage Transmission Line Insulators.Underground Cables. Power Transformers. Insulation Coordination. High-Voltage Testing and Measuring Techniques.

Engineers working with high-voltage power equipment; engineers in electrical utilities; manufacturers of components used in power transmission and distribution; and academics, researchers, and graduate students in the high-voltage fields.

Farouk A.M. Rizk holds a BS and MS from Cairo University, Egypt; a Ph.D from the Royal Institute of Technology, Stockholm, Sweden; and a doctorate of technology from Chalmers University of Technology, Gothenburg, Sweden. He has worked with ASEA (ABB), Sweden; the Egyptian Electricity Authority; and the Institut de Recherche d'Hydro-Quebec, Varennes, Canada. As international chairman of IEC TC 28: Insulation Coordination, he made major contributions to standardization. An elected IEEE fellow for contributions to the science of high-voltage technology and for technical leadership in the advancement of the electric power industry, many times awarded, and a CIGRE distinguished member, he is currently president of Lightning Electrotechnologies, Inc. and Expodev, Inc., both in Montreal, Quebec, Canada. His research covers many topics in high-voltage and high-power engineering.

Giao N. Trinh holds a BS and Ph.D from Laval University, Quebec City, Quebec, Canada. He has worked with the Institut de Recherche d'Hydro-Quebec, Varennes, Canada and Ecole Polytechnique de Montreal, Quebec, Canada. He holds two patents and is the author or co-author of many technical papers in the areas of corona and partial-discharge phenomena, high voltage testing, and liquid, solid, and gaseous power equipment insulation. An elected IEEE fellow for contributions to the understanding of dielectric and arc phenomena in gas-insulated cables and PES, and a DEIS member, he received a Prize Paper Award from the Substation Committee for his work on the assessment of the risk of burn-through of gas-insulated cables.