Iron-Based Superconducting Thin Films, 1st ed. 2021
Springer Series in Materials Science Series, Vol. 315

Author:

Language: English

Approximative price 168.79 €

In Print (Delivery period: 15 days).

Add to cartAdd to cart
Publication date:
392 p. · 15.5x23.5 cm · Hardback

This book provides a modern introduction to the growth, characterization, and physics of iron-based superconducting thin films. Iron pnictide and iron chalcogenide compounds have become intensively studied key materials in condensed matter physics due to their potential for high temperature superconductivity. With maximum critical temperatures of around 60 K, the new superconductors rank first after the celebrated cuprates, and the latest announcements on ultrathin films promise even more. Thin film synthesis of these superconductors began in 2008 immediately after their discovery, and this growing research area has seen remarkable progress up to the present day, especially with regard to the iron chalcogenides FeSe and FeSe1-xTex, the iron pnictide BaFe2-xCoxAs2 and iron-oxyarsenides.

This essential volume provides comprehensive, state-of-the-art coverage of iron-based superconducting thin films in topical chapters with detailed information on thin film synthesis and growth, analytical film characterization, interfaces, and various aspects on physics and materials properties.  Current efforts towards technological applications and functional films are outlined and discussed. The development and latest results for monolayer FeSe films are also presented. This book serves as a key reference for students, lecturers, industry engineers, and academic researchers who would like to gain an overview of this complex and growing research area.

Introduction to Iron-Based Superconductors.- Engineering Basics: Film Growth Methods for Iron-Based Superconductors.- Thin Film Structure and Composition: Analytical Investigations.- Film/Substrate Interfaces.- More Interfaces: Heterostructures with Iron-Based Superconductors.- Important Aspects from Thin Film Studies: The Role of Grain Boundaries, Electronic Phase Diagrams, Metastable Phases, The Critical Temperature Boost.- Recent Developments Towards Technological Applications: Flux Pinning, Electronic Application Potential.- Summary.- Appendix.- References.- Index.

Serves as a modern and topical introduction to iron-based superconducting thin films

Offers practical information for materials scientists, engineers, and physicists

Covers both the materials aspects of film growth and the fundamental physics of iron-based superconducting compounds

Features comparison of available data and results

Includes an extensive list of scientifically established literature on iron-based superconductors for further reading